Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (1) P. 034-038 (2019).
DOI: https://doi.org/10.15407/spqeo22.01.034


References

1. Lebedev A.I. Physics of Semiconductor Devices. Moscow: Fizmatlit, 2008 (in Russian).
2. Bazu M., Bajenescu T. Failure Analysis: A Practical Guide for Manufacturers of Electronic Components and Systems. Vol. 4. John Wiley & Sons, 2011.
https://doi.org/10.1002/9781119990093
3. Belyaev A.E., Boltovets N.S., Venger E.F. et al. Physico-technological Aspects of Degradation of Silicon Microwave Diodes. Kyiv: Akadem-periodyka, 2011.
https://doi.org/10.15407/akademperiodyka.176.182
4. Romanets P.M., Belyaev A.E., Sachenko А.V., Boltovets N.S., Basanets V.V., Konakova R.V., Slipokurov V.S., Khodin А.А., Pilipenko V.А., Shynkarenko V.V., Kudryk Ya.Ya. Theoretical and experimental modelling the specific resistance of vertical ohmic contacts Au-Ti-Pd-n+-n-n+-Si in IMPATT diodes. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. 19, No 4. P. 366-370.
https://doi.org/10.15407/spqeo19.04.366
5. Gantmakher V.F., Levinson I.B. Carrier Scattering in Metals and Semiconductors. Elsevier Science Pub. Co., 1987.
6. Fleszar A. Screening of shallow impurities in germanium within the local-density approximation. Phys. Rev. 1987. 36. P. 5925-5932.
https://doi.org/10.1103/PhysRevB.36.5925
7. Romanets P.N. Nonlinear additives to the Brooks-Herring screened potential. J. Multidiscip. Eng. Sci. Technol. 2014. 1, No 5. P.167-171.
8. Pearson G.L., Bardeen J. Electrical properties of pure silicon and silicon alloys containing boron and phosphorus. Phys Rev. 1949. 5. P. 865-883.
https://doi.org/10.1103/PhysRev.75.865
9. Mott N.F. Metal insulator transition. Rev. Mod. Phys. 1968. 40, No 4. P. 677-683.
https://doi.org/10.1103/RevModPhys.40.677
10. Padovani F. A., Stratton R. Field and thermionic-field emission in Schottky barriers. Solid-State Electronics. 1966. 9, No 7. P. 695-707.
https://doi.org/10.1016/0038-1101(66)90097-9
11. Basanets V.V., Slipokurov V.S., Shynkarenko V.V., Kudryk R.Ya., Kudryk Ya.Ya. Investigation of resistivity of ohmic contacts of Au−Ti−Pd−n-Si for impact ionization avalanche transit-time diodes. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2015. №1. P. 33-37 (in Russian).
https://doi.org/10.15222/TKEA2015.1.33
12. Belyaev A.E., Boltovets N.S., Konakova R.V., Kudryk Ya.Ya., Sachenko А.V., Sheremet V.N., Vinogradov A.O. Temperature dependence of contact resistance for Au-Ti-Pd2Si-n+-Si ohmic contacts subjected to microwave irradiation. Semiconductors. 2012. 46, No 3. P. 330-333.
https://doi.org/10.1134/S1063782612030074
13. Sachenko A.V., Konakova R.V., Belyaev A.E. Physical mechanisms providing formation of ohmic contacts metal-semiconductor. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2018. 21, No 1. P. 5-40.
14. Shepela A. The specific contact resistance of Pd2Si contacts on n- and p-Si. Solid-State Electronics. 1973. 16, No 4. P. 477-481.
https://doi.org/10.1016/0038-1101(73)90185-8
15. Sachenko A.V., Belyaev A.E., Konakova R.V., Boltovets N.S., Sheremet V.N. Mechanisms of contact resistance formation in ohmic contacts with high dislocation density (review). Optoelectronics and Semiconductor Technics. 2013. Issue 48. P. 5-29 (in Russian).
https://doi.org/10.1063/1.4848285