Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (1) P. 039-046 (2019).
DOI: https://doi.org/10.15407/spqeo22.01.039


References

1. Morgunov R.B. Spin micromechanics in the physics of plasticity. Phys. Usp. 2004. 47. P. 125-147.
https://doi.org/10.1070/PU2004v047n02ABEH001683
2. Golovin Yu.I. Magnetoplastic effect in solids (Review). Physics of the Solid State. 2004. 46, No 5. P. 789-824.
https://doi.org/10.1134/1.1744954
3. Buchachenko А.L. Magnetoplasticity of diamagne-tic crystals in microwave fields. Journal of Experi-mental and Theoretical Physics, 2007. 105(3), P. 593-598. DOI: 10.1134/S1063776107090166.
https://doi.org/10.1134/S1063776107090166
4. Belyavsky V.I., Levin M.N. Spin effects in defect reactions. Phys. Rev. B. 2004. 70, No 10. P. 104101-1-104101-8.
https://doi.org/10.1103/PhysRevB.70.104101
5. Levin M.N., Zon B.A. The effect of pulsed magnetic fields on Cz-Si crystals. Journal of Experimental and Theoretical Physics. 1997. 84, No 4. P. 760-773.
https://doi.org/10.1134/1.558209
6. Levin M.N., Tatarintsev A.V., Kostsova O.A., Kostsov A.M. Activation of a semiconductor surface by a pulsed magnetic field. Tech. Phys. 2003. 48, No 10. P. 1304-1306.
https://doi.org/10.1134/1.1620124
7. Levin M.N., Semenova G.V., Sushkova T.P., Dolgopolova E.A., Postnikov V.V. The effect of pulsed magnetic fields on the real structure of indium arsenide crystals. Tech. Phys. Lett. 2002. 28, No 10. P. 818-820.
https://doi.org/10.1134/1.1519017
8. Rodríguez-Castañeda C.A., Moreno-Romero P.M., Martínez-Alonso C., and Hu H. Microwave synthesized monodisperse CdS spheres of different size and color for solar cell applications. J. Nanomater. 2015. 2015. Article ID 424635. 10 p.
https://doi.org/10.1155/2015/424635
9. Gerbec J.A., Magana D., Washington A., and Strouse G.F. Microwave-enhanced reaction rates for nanoparticle synthesis. J. Amer. Chem. Soc. 2005. 127, No 45. P. 15791-15800.
https://doi.org/10.1021/ja052463g
10. Ermolovich I.B., Milenin G.V., Milenin V.V., Konakova R.V., Red'ko R.A., Modification of the defect structure in binary semiconductors under action of microwave radiation. Techn. Phys. 2007. 52, No 9. P. 1173-1177.
https://doi.org/10.1134/S1063784207090113
11. Milenin G.V., Red'ko R.A. Physical mechanisms and models of the long-term transformations in radiative recombination observed in n-GaAs under microwave irradiation. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. 19, No 1. P. 14-22.
https://doi.org/10.15407/spqeo19.01.014
12. Red'ko R.A., Milenin G.V., Milenin V.V. Mechanisms and possibilities of defect reorganization in III-V compounds due to the non-thermal microwave radiation treatment. J. Luminesc. 2017. 192. P. 1295-1299.
https://doi.org/10.1016/j.jlumin.2017.09.013
13. Masterov V.F., Samorukov B.E., Deep centres in AIIIBV compounds (Review). Fizika i tekhnika poluprovodnikov. 1978. 12, No 4. P. 625-652 (in Russian).
14. Ashcroft N., Mermin D. Solid State Physics. Thomson Press (India) Ltd, 2003.
15. Smith R.A. Semiconductors. Cambridge, New York, Cambridge University Press, 1978.
16. Zayats N.S., Konakova R.V., Milenin V.V., Milenin G.V., Red'ko R.A., Red'ko S.N. Microwave-radiation induced structural transformations in homo- and heterogeneous GaAs-based systems. Techn. Phys. 2015. 60, No 3. P. 432-436.
https://doi.org/10.1134/S1063784215030299
17. Ermolovich I.B., Milenin V.V., Konakova R.V., Red'ko R.A. Influence of microwave irradiation on radiative recombination in A3B5 compounds. Fizika i khimiya obrabotki materialov, 2006. № 5. P. 12-18 (in Russian).
18. Milenin V.V., Red'ko R.A., Red'ko S.N. Effect of microwave irradiation on radiative recombination in GaAs. Radioelectronics and communications systems. 2006. 8, No 9. P. 77-80.
19. Bekefi G. Radiation Processes in Plasmas. Wiley, New York-London-Sydney, 1966.
20. Milenin G.V., Milenin V.V., Red'ko R.A. Cyclotron radiation of semiconductor crystals. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2018. 21, No 1. P. 54-57.
https://doi.org/10.15407/spqeo21.01.054
21. Milenin G.V., Red'ko R.A. Physical mechanisms and models of long-term transformations of radiative recombination in n-GaAs due to the magnetic field treatments. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. 19, No 3. P. 279-284.
https://doi.org/10.15407/spqeo19.03.279
22. Davydov V.N., Loskutov E.A., Naiden E.P. Late structural changes in semiconductors, stimulated by magnetic field. Semiconductors. 23(9), p.1596 - 1600 (1989), in Russian.
23. Buchachenko А.L. Effect of magnetic field on mechanics of non-magnetic crystals: The nature of magnetoplasticity. Journal of Experimental and Theoretical Physics, 102(5), p. 795-798 (2006).
https://doi.org/10.1134/S1063776106050116
24. Skvortsov, A.A., Orlov, A.M. & Gonchar, L.I. The effect of a weak magnetic field on the mobility of dislocations in silicon. Journal of Experimental and Theoretical Physics. 93(1), p. 117-120 (2001).
https://doi.org/10.1134/1.1391527
25. Badylevich, M.V., Iunin, Y.L., Kveder, V.V. et al. Effect of a magnetic field on the starting stress and mobility of individual dislocations in silicon. Journal of Experimental and Theoretical Physics, 97(3), p. 601-605 (2003).
https://doi.org/10.1134/1.1618345
26. Ossipyan, Y.A., Morgunov, R.B., Baskakov, A.A. et al. Magnetoresonant hardening of silicon single crystals. Journal of Experimental and Theoretical Physics Letters. 79(3), p. 126-130 (2004).
https://doi.org/10.1134/1.1719128
27. Ossipyan Y.A., Bredikhin S.I., Kveder V.V. et al. Electronic Properties of Dislocations in Semiconductors. Moscow, Editorial URSS, 2000 (in Russian).