Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (1) P. 047-052 (2019).
DOI: https://doi.org/10.15407/spqeo22.01.047


References

1. Kuhs W.F., Nitsche R., Scheunemann K. The argyrodites - a new family of the tetrahedrally close-packed structures. Mat. Res. Bull. 1979. 14. P. 241-248.
https://doi.org/10.1016/0025-5408(79)90125-9
2. Studenyak I.P., Kranjčec M., Kovacs Gy.Sh., Panko V.V., Mitrovcij V.V., Mikajlo O.A. Structural disordering studies in Cu6+PS5I single crystals. Mater. Sci. Eng. 2003. B 97. P. 34-38.
https://doi.org/10.1016/S0921-5107(02)00392-6
3. Gagor A., Pietraszko A., Kaynts D. Diffusion paths formation for Cu+ ions in superionic Cu6PS5I single crystals studied in terms of structural phase transition. J. Solid State Chem. 2005. 178. P. 3366-3375.
https://doi.org/10.1016/j.jssc.2005.08.015
4. Studenyak I.P., Stefanovich V.O., Kranjčec M., Desnica D.I., Azhnyuk Yu.M., Kovacs Gy.Sh., Panko V.V. Raman scattering studies of Cu6PS5Hal (Hal = Cl, Br and I) fast-ion conductors. Solid State Ionics. 1997. 95. P. 221-225.
https://doi.org/10.1016/S0167-2738(96)00477-8
5. Samulionis V., Banys J., Vysochanskii Y., Studenyak I. Investigation of ultrasonic and acoustoelectric properties of ferroelectric-semiconductor crystals. Ferroelectrics. 2006. 336. P. 29-38.
https://doi.org/10.1080/00150190600695255
6. Studenyak I.P., Kranjčec M., Kurik M. Urbach rule and disordering processes in Cu6P(S1-xSex)5Br1-yIy superionic conductors. J. Phys. Chem. Solids. 2006. 67. P. 807-817.
https://doi.org/10.1016/j.jpcs.2005.10.184
7. Studenyak I.P., Kranjčec M., Kovacs Gy.Sh., Desnica I.D., Panko V.V., Slivka V.Yu. Influence of compositional disorder on optical absorption processes in Cu6P(S1-xSex)5I crystals. J. Mater. Res. 2001. 16. P. 1600-1608.
https://doi.org/10.1557/JMR.2001.0222
8. Studenyak I.P., Kranjčec M., Kovacs Gy.S., Desnica-Franković I.D., Panko V.V., Guranich P.P. Electric conductivity and optical absorption edge of Cu6P(SexS1-x)5I fast-ion conductors in the selenium-rich region. J. Phys. Chem. Solids. 2001. 62. P. 665-672.
https://doi.org/10.1016/S0022-3697(00)00187-6
9. Kranjčec M., Studenyak I.P., Bilanchuk V.V., Dyordyaj V.S., Panko V.V. Compositional behaviour of Urbach absorption edge and exciton-phonon interaction parameters in Cu6PS5I1-xBrx superionic mixed crystals. J. Phys. Chem. Solids. 2004. 65. P. 1015-1020.
https://doi.org/10.1016/j.jpcs.2003.10.061
10. I. Golovin Yu.I. Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers and films: A review. Physics of Solid State. 2008. 50. P. 2205-2236.
https://doi.org/10.1134/S1063783408120019
11. Li X., Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Materials Characterization. 2002. 48. P. 11-36.
https://doi.org/10.1016/S1044-5803(02)00192-4
12. Milman Yu.V., Golubenko A.A., Dub S.N. Indentation size effect in nanohardness. Acta Materialia. 2002. 59. P. 7480-7487.
https://doi.org/10.1016/j.actamat.2011.08.027
13. Giannakopoulos A.E., Suresh S. Determination of elastoplastic properties by instrumented sharp indentation. Scripta Mater. 1999. 40. P. 1191-1198.
https://doi.org/10.1016/S1359-6462(99)00011-1
14. Golovin Yu.I. Nanoindentation and Its Capabilities. Moscow, Mashinostroenie, 2009 (in Russian).
15. Mason J.K., Lund A.C., Schuh C.A. Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B. 2006. 73. P. 054102:1-14.
https://doi.org/10.1103/PhysRevB.73.054102
16. Ashby M.F. The deformation of plastically non-homogeneous materials. Phil. Mag. 1970. 21. P. 399-424.
https://doi.org/10.1080/14786437008238426
17. Gao H., Huang Y., Nix W.D. Hutchinson J.W. Mechanism based strain gradient plasticity - I. Theory. J. Mech. Phys. Solids. 1999. 47. P. 1239-1263.
https://doi.org/10.1016/S0022-5096(98)00103-3
18. Nix W.D., Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids. 1998. 46. P. 411-425.
https://doi.org/10.1016/S0022-5096(97)00086-0
19. Matthew R., Begley J., Hutchinson W. The mechanics of size-dependent indentation. J. Mech. Phys. Solids. 1998. 46. P. 2049-2068.
https://doi.org/10.1016/S0022-5096(98)00018-0
20. Zong Z., Lou J., Adewoye O.O., Elmustafa A.A., Hammad F., Soboyejo W.O. Indentation size effects in the nano and microhardness of FCC single crystal metals. Materials and Manufacturing Processes. 2007. 22. P. 228-237.
https://doi.org/10.1080/10426910601063410
21. Lofaj F., Nemeth D. The effects of tip sharpness and coating thickness on nanoindentation measurements in hard coatings on softer substrates by FEM. Thin Solid Films. 2017. 644. P. 173-181.
https://doi.org/10.1016/j.tsf.2017.09.051
22. Tsui T.Y., Pharr G.M. Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J. Mater. Res. 1999. 14. P. 292-301.
https://doi.org/10.1557/JMR.1999.0042
23. Bilanych V.S., Lofaj F., Flachbart K., Csach K., Kuzma V.V., Rizak V.M. Nanoindentation of amorphous films of the Ge-As-Se system. Physics of Solid State. 2014. 56. P. 1163-1167.
https://doi.org/10.1134/S1063783414060067
24. Studenyak I., Rybak S., Bendak A., Izai V., Guranich P., Kúš P., Mikula M. Structural disordering studies of Cu6PS5I-based thin films deposited by magnetron sputtering. EPJ Web of Conferences. 2017. 133. P. 02002:1-3.
https://doi.org/10.1051/epjconf/201713302002
25. Studenyak I.P., Bendak A.V., Izai V.Yu., Guranich P.P., Kúš P., Mikula M., Grančič B., Zahoran M., Greguš J., Vincze A., Roch T., Plecenik T. Electrical and optical parameters of Cu6PS5I-based thin films deposited using magnetron sputtering. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. 19. P. 79-83.
https://doi.org/10.15407/spqeo19.01.079
26. Studenyak I.P., Izai V.Yu., Bendak A.V., Guranich P.P., Azhniuk Yu.M., Kúš P., Zahn D.R.T. Optical and electrical properties of Cu6PS5I-based thin films versus copper content variation. Ukr. J. Phys. Opt. 2017. 18. P. 232-238.
https://doi.org/10.3116/16091833/18/4/232/2017