Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (1) P. 053-059 (2019).
DOI: https://doi.org/10.15407/spqeo22.01.053


References

1. Tan H. Factors affecting molecular self-assembly and its mechanism. Sci. Res. J. 2012. 9, No 1. P. 43-61.
https://doi.org/10.24191/srj.v9i1.5385
2. Heyne B. Self-assembly of organic dyes in supramolecular aggregates. Photochem. Photobiol. Sci. 2016. 15. P. 1103-1114. DOI: 10.1039/C6PP00221H.
https://doi.org/10.1039/C6PP00221H
3. Würthner F. Dipole-dipole interaction driven self-assembly of merocyanine dyes: From dimers to nanoscale objects and supramolecular materials. Accounts of Chemical Research. 2016. 49, No 5. 868-876. DOI: 10.1021/acs.accounts.6b00042.
https://doi.org/10.1021/acs.accounts.6b00042
4. Soriano E., Holder C., Levitz A., Henary M. Benz[c,d]indolium-containing monomethine cyanine dyes: Synthesis and photophysical properties. Molecules (Basel, Switzerland). 2016. 21, No 1. P. 23 (1-15). DOI: 10.3390/molecules21010023.
https://doi.org/10.3390/molecules21010023
5. Tolmachev O., Pilipchuk N., Kachkovsky O. et al. Spectral and non-linear optical properties of cyanine bases' derivatives of benzo[c,d]indole. Dyes and Pigments. 2007. 74. P. 195-201. DOI: 0.1016/j.dyepig.2006.01.048.
https://doi.org/10.1016/j.dyepig.2006.01.048
6. Sieryk M., Dimitriev O., Doroshenko T., Grytsenko K., Slominski Y. and Kachkovsky O. Aggregation of derivatives of benz[C, D]indole dyes: Effect of the side group and ambient temperatures. 2014 IEEE 34th Intern. Sci. Conf. on Electron. and Nanotechnol. (ELNANO), Kyiv, 2014. P. 223-226. DOI: 10.1109/ELNANO.2014.6873928.
https://doi.org/10.1109/ELNANO.2014.6873928
7. Sieryk M., Dimitriev O. Self-assembly of monomethyncyanine and merocyanine dyes: Impact of the intramolecular dipole and substrate used. Front Nanosci Nanotech. 2018. 4, No 2. P. 1-6. DOI: 10.15761/FNN.1000170.
https://doi.org/10.15761/FNN.1000170
8. Grytsenko K., Doroshenko T., Kolomzarov Yu., Lytvyn O., Serik M., Tolmachev O., Slominski Yu., Schrader S. Growth and optical properties of dye films and dye-in-polymer matrix deposited by vacuum evaporation. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2010. 13, No 2. P. 177-179.
9. Mukhopadhyay S., Risko C., Marder S.R., Brédas J.-L. Polymethine dyes for all-optical switching applications: A quantum-chemical characterization of counter-ion and aggregation effects on the third-order nonlinear optical response. Chem. Sci. 2012. 3. P. 3103-3112. DOI: 10.1039/C2SC20861J.
https://doi.org/10.1039/c2sc20861j
10. Tatikolov A.S. Polymethine dyes as spectral-fluorescent probes for biomacromolecules. J. Photochem. and Photobiol. C: Photochem. Rev. 2012. 13. P. 55-90. DOI: 10.1016/j.jphotochemrev.2011.11.001.
https://doi.org/10.1016/j.jphotochemrev.2011.11.001
11. Shapiro B.I. Molecular assemblies of polymethine dyes. Russian Chem. Rev. 2006. 75. P. 433-456.
https://doi.org/10.1070/RC2006v075n05ABEH001208
12. Hestand N., Spano F. Expanded theory of H- and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 2018. 118, No 15. P. 7069-7163. DOI: 10.1021/acs.chemrev.7b00581.
https://doi.org/10.1021/acs.chemrev.7b00581
13. Cai K., Xie J., Zhang D., Shi W., Yan Q., Zhao D. Concurrent cooperative J-aggregates and anticooperative H-aggregates. J. Amer. Chem. Soc. 2018. 140, No 17. P. 5764-5773. DOI: 10.1021/jacs.8b01463.
https://doi.org/10.1021/jacs.8b01463
14. Hunter C., Sanders J. The nature of π-π interactions. J. Amer. Chem. Soc. 1990. 112, No 14. P. 5525-5534.
https://doi.org/10.1021/ja00170a016
15. Grytsenko K., Doroshenko T., Kolomzarov Yu. et al. Research on the growth of dye film in vacuum in situ. Proc. SPIE. 2008. 6999. P. 69991Z-6. DOI: 10.1117/12.780707.
https://doi.org/10.1117/12.780707
16. Kasha M. Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat. Res. 1963. 20. P. 55-64. DOI: 10.2307/3571331.
https://doi.org/10.2307/3571331