1. Hochrein T. Markets, availability, notice, and technical performance of terahertz systems: Historic development, present, and trends. J. Infrared, Millimeter, and Terahertz Waves. 2015. 36. P. 235-254. https://doi.org/10.1007/s10762-014-0124-6 |
|
2. Dhillon S.S. et al. (32 Coauthors). The 2017 terahertz science and technology roadmap. J. Phys. D: Appl. Phys. 2017. 50. P. 043001. |
|
3. Walther M., Fischer B.M., Ortner A., Bitzer A. et al. Chemical sensing and imaging with pulsed terahertz radiation. Anal. Bioanal. Chem. 397 (2010) 1009-1017]. https://doi.org/10.1007/s00216-010-3672-1 |
|
4. Emerson D.T. The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Trans. Microwave Theory Techn. 1997. 45. P. 2267-2273. https://doi.org/10.1109/22.643830 |
|
5. Aggarwal V. Jagadish Chandra Bose: The real inventor of Marconi's wireless detector; http://web.mit.edu/varun_ag/www/bose_2006.pdf. |
|
6. US Patent 676,332. Apparatus for wireless telegraphy, G. Marconi. Patented June 11, 1901. Application Feb. 23, 1901. |
|
7. Bondyopadhyay P.K. Sir J.C. Bose's diode detector received Marconi's first transatlantic wireless signal of December 1901 (The "Italian Navy coherer" scandal revisited). Proc. IEEE. 1998. 86. P. 259-285. https://doi.org/10.1109/5.658778 |
|
8. Corsi C. TeraHertz: Quasioptics or sub-millimeter waves? History, actual limits and future developments for security systems, in: C. Corsi, F. Sizov (Eds.), THz and Security Applications. Dordrecht: Springer, 2014. P. 1-24. https://doi.org/10.1007/978-94-017-8828-1_1 |
|
9. THz Pioneers. IEEE Trans. THz Sci. Technol. 2012. 2. P. 265-270; 2012. 2. P. 477-484; 2014. 4. P. 137-146; 2014. 4. P. 645-652. |
|
10. Bründermann E., Hübers H.-W., Kimmitt M.F. Terahertz Techniques. Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-02592-1 |
|
11. Gordy W. Early events and some later developments in microwave spectroscopy. J. Mol. Struct. 1983. 97. P. 17-32. https://doi.org/10.1016/0022-2860(83)90172-2 |
|
12. Kimmitt M.F. Restrahlen to T-rays: 100 years of terahertz radiation. J. Biolog. Phys. 2003. 29. P. 77-85. https://doi.org/10.1023/A:1024498003492 |
|
13. Chamberlain J.M. Where optics meets electronics: recent progress in decreasing the terahertz gap, Phil. Trans, R. Soc. Lond. A. 2004. 362. P. 199-213. https://doi.org/10.1098/rsta.2003.1312 |
|
14. Blaney T.G. Signal-to-noise ratio and other characteristics of heterodyne radiation receivers. Space Sci. Rev. 1975. 17. P. 691-702. https://doi.org/10.1007/BF00727583 |
|
15. Richards P. Bolometers for infrared and millimeter waves. J. Appl. Phys. 1994. 76. P. 1-24. https://doi.org/10.1063/1.357128 |
|
16. Chattopadhyay G. Sensor technology at submillimeter wavelength for Space applications. Int. J. Smart Sens. Intell. Systems. 2008. 1. P. 1-20. https://doi.org/10.21307/ijssis-2017-275 |
|
17. Lamarre J.M., Desert F.X., Kirchner T. Background limited infrared and sub-millimeter instruments. Space Sci. Rev. 1995. 74. P. 27-36. https://doi.org/10.1007/978-94-011-0363-3_4 |
|
18. Kangro H. Early History of Planck's Radiation Law. New York: Taylor & Francis, 1976. |
|
19. P Siegel. THz pioneer: Richard S. Saykally - Water, water everywhere... IEEE Trans. Terahertz Sci. Technol. 2012. 2. P. 265-270. https://doi.org/10.1109/TTHZ.2012.2190870 |
|
20. Bose Jagadis Chandra. On a self-recovering coherer and the study of the cohering action of different metals. Proc. IEEE. 1998. 86. P. 244-247 (reprinted from: Bose J.C. On a self-recovering coherer and the study of the cohering action of different metals. Proc. Royal Soc., London. 1899. LXV no. 416. P. 166-172. https://doi.org/10.1109/JPROC.1998.658776 |
|
21. U.S. Patent 755,840. Detector for electrical disturbances, J.C. Bose, filed September 30, 1901 (1904). |
|
22. Pearson G.L. and Brattain W.H. History of semiconductor research. Proc. IRE. 1955. 43. P. 1794-1806. https://doi.org/10.1109/JRPROC.1955.278042 |
|
23. Glagolewa-Arkadiewa A. Short electromagnetic waves of wave-length up to 82 microns. Nature. 1924. 113. P. 640. https://doi.org/10.1038/113640a0 |
|
24. Kostenko A.A., Nosich A.I., Tishchenko I.A. Development of the first Soviet 3-coordinate L-band pulsed radar in Kharkov before WW II. IEEE Antennas Propagat. Mag. 2001. 44. P. 28-49. https://doi.org/10.1109/74.934901 |
|
25. Nosich A.I. Dramatic history and impact of decimeter-wave radar "Zenit" developed in Kharkiv in the 1930s. XXII International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), Dnipro, Ukraine, 25-28 Sept., 2017. P. 11-14. https://doi.org/10.1109/DIPED.2017.8100546 |
|
26. Gordy W. Microwave spectroscopy. Rev. Modern Phys. 1948. 20. P. 668-689. https://doi.org/10.1103/RevModPhys.20.668 |
|
27. Burrus C.A., Jr., Gordy W. Submillimeter wave spectroscopy. Phys. Rev. 1954. 93. P. 897-898. https://doi.org/10.1103/PhysRev.93.897 |
|
28. Alpher V.S. Ralph A. Alpher, George Antonovich Gamow, and the prediction of the cosmic microwave background radiation. Asian J. Phys. 2014. 23. P. 17-26. |
|
29. Fixsen D.J. The temperature of the cosmic microwave background. Astrophys. J. 2009. 707. P. 916-920. https://doi.org/10.1088/0004-637X/707/2/916 |
|
30. Lineweaver Ch.H. Cosmic microwave background, in: Discoveries in Modern Science: Exploration, Invention, Technology, J. Trefil (Ed.). Farmington Hills: Macmillan, 2014. P. 224-229. |
|
31. Penzias A.A., Wilson R.W. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 1965. 142. P. 419-421. https://doi.org/10.1086/148307 |
|
32. Warnecke R., Guenard P. Some recent work in France on new types of valves for the highest radio frequencies. Proc. IEE -Radio Commun. Eng. 1953. 100, no. 68, pt. III. P. 351-362. https://doi.org/10.1049/pi-3.1953.0073 |
|
33. Read W.T. A proposed high frequency negative resistance diode. Bell. Syst. Tech. J. 1958. 37. P. 401-446. https://doi.org/10.1002/j.1538-7305.1958.tb01527.x |
|
34. Tager A.S. The avalanche-transit diode and its use in microwaves. Sov. Phys. Usp. 1967. 9. P. 892-912. https://doi.org/10.1070/PU1967v009n06ABEH003231 |
|
35. Jonston R.L., De Lоасh В.С., Соhеn В.G. A silicon diode microwave oscillator. Bell Syst. Techn. J. Briefs. 1965. 44. P. 369. https://doi.org/10.1002/j.1538-7305.1965.tb01667.x |
|
36. Brand F.A., Higgins V.I., Baranowski L.I., Druesne M.A. Microwave generation from avalanching varactor diodes. Proc. IEEE. 1965. 53. P. 1276-1277. https://doi.org/10.1109/PROC.1965.4225 |
|
37. Gunn J.B. Microwave oscillation of current in III-V semiconductors. Solid State Commun. 1963. 1. P. 88-91. https://doi.org/10.1016/0038-1098(63)90041-3 |
|
38. Crocker A., Gebbie H.A., Kimmitt M.F., Mathias L.E.S. Stimulated emission in the far infra-red. Nature. 1964. 201. P. 250-251. https://doi.org/10.1038/201250a0 |
|
39. Chang T.Y., Bridges T.J. Laser action at 452, 496, and 541 μm in optically pumped CH3F. Opt. Commun. 1970. 1. P. 423-426. https://doi.org/10.1016/0030-4018(70)90169-0 |
|
40. Richards P.L. High-resolution Fourier transform spectroscopy in the far-infrared. J. Opt. Soc. Am. 1964. 54. P. 1474-1484. https://doi.org/10.1364/JOSA.54.001474 |
|
41. Webb S.J., Dodds D.D. Inhibition of bacterial cell growth by 136 gc microwaves, Nature. 1968. 218. P. 374-375. https://doi.org/10.1038/218374a0 |
|
42. Blackman C.F., Benane S.G., Weil C.M., Ali J.S. Effects of non-ionizing electromagnetic radiation on single-cell biologic systems. Annals of the New York Acad. Sci. 1975. 247. P. 352-366. https://doi.org/10.1111/j.1749-6632.1975.tb36010.x |
|
43. Nicolson A.M. Broad-band microwave transmission characteristics from a single measurement of the transient response. IEEE Transactions on Instrumentation and Measurement. 1968. 17, No 4. P. 395-402. https://doi.org/10.1109/TIM.1968.4313741 |
|
44. Schottky W., Stormer R., Waibel F. Uber die Gleichrichterwirkungenan der Grenze von Kupferoxydul gegen aufgebrachte Metallelektroden (On the rectifying action of cuprous oxide in contact with other metals). Z. Hochfrequenz. 1931. 37. P. 162-167, 175-187. |
|
45. Kreisler A.J.M. Submillimeter wave applications of submicron Schottky diodes. Proc. SPIE. 1966. 666. P. 51-63. |
|
46. Richards P.L., Shen T.M., Harris R.E., Lloyd F.L. Quasiparticle heterodyne mixing in SIS tunnel junctions. Appl. Phys. Lett. 1979. 34. P. 345-347. https://doi.org/10.1063/1.90782 |
|
47. Faries W., Gehring K.A., Richards P.L., Shen Y.R. Tunable far-infrared radiation generated from difference frequency between two ruby lasers. Phys. Rev. 1969. 180. P. 363-365. https://doi.org/10.1103/PhysRev.180.363 |
|
48. Yajima T., Takeuchi N. Far-infrared difference frequency generation by picosecond laser pulses. Jap. J. Appl. Phys.1970. 9. P. 1361-1371. https://doi.org/10.1143/JJAP.9.1361 |
|
49. Kazarinov R.F., Suris R.A. Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice. Fizika i Tekhnika Poluprovodnikov. 1971. 5. P. 797-800 (in Russian). |
|
50. Faist J., Capasso F., Sivco D., Cirtori C. et al. Quantum cascade laser. Science. 1994. 264. P. 553-556. https://doi.org/10.1126/science.264.5158.553 |
|
51. Barker D.H., Hodges D.T., Hartwick T.S. Far infrared imagery. Proc. SPIE. 1975. 67. P. 27-34. |
|
52. Auston D.H. Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 1975. 26. P. 101-103. https://doi.org/10.1063/1.88079 |
|
53. Auston D.H., Smith P.R. Generation and detection of millimeter waves by picosecond photoconductivity. Appl. Phys. Lett. 1983. 43. P. 631-633. https://doi.org/10.1063/1.94468 |
|
54. Kazanskii A.G., Richards P.L., Haller E.E. Far infrared photoconductivity of uniaxially stressed germanium. Appl. Phys. Lett. 1977. 31. P. 496-497. https://doi.org/10.1063/1.89755 |
|
55. Tuengler P., Keilmann F., Genzel L. Search for millimeter microwave effects on enzyme or protein functions. Zeitschrift fur Naturforschung C. 1979. 34. P. 60-63. https://doi.org/10.1515/znc-1979-1-214 |
|
56. Hintzsce H., Stopper H. Effects of terahertz radiation on biological systems. Critical Rev. Environmental Sci. Technol. 2012. 42. P. 2408-2434. https://doi.org/10.1080/10643389.2011.574206 |
|
57. Mourou G., Stancampiano C.V., Antonetti A., Orszag A. Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch. Appl. Phys. Lett. 1981. 39. P. 295-296. https://doi.org/10.1063/1.92719 |
|
58. Auston D.H., Cheung K.P., Smith P.R. Picosecond photoconducting Hertzian dipoles, Appl. Phys. Lett. 1984. 45. P. 284-286. https://doi.org/10.1063/1.95174 |
|
59. Fattinger C., Grischkowsky D. Terahertz beams. Appl. Phys. Lett. 1989. 54. P. 490-492. https://doi.org/10.1063/1.100958 |
|
60. Smith P.R., Auston D.H., Nuss M.C. Subpicosecond photoconducting dipole antenna. IEEE J. Quantum Electron. 1988. 24. P. 255-260. https://doi.org/10.1109/3.121 |
|
61. Spence D.E., Kean P.N., Sibbett W. Sub-100 fs pulse generation from a self-mode-locked titanium: sapphire laser. Conference on Lasers and Electro-optics, CLEO, Technical Digest Series: Opt. Soc. of America, 1990. P. 619-620. |
|
62. Auston D.H., Nuss M.C. Electrooptic generation and detection of femtosecond electrical transients. IEEE J. Quant.Electr. 1988. 24. P. 184-197. https://doi.org/10.1109/3.114 |
|
63. Elias L.R., Hu J., Ramian G. The UCSB electrostatic accelerator free electron laser: First operation. Nucl. Instrum. Meth. Phys. Res. A. 1984. 237. P. 203-206. https://doi.org/10.1016/0168-9002(85)90349-3 |
|
64. Gershenzon E.M., Gershenson M.E., Goltsman G.N., Semenov A.D., Sergeev A.V. On the limiting characteristics of high-speed superconducting bolometers. Sov. Phys. Tech. Phys. 1989. 34. P. 195-201 (in Russian). |
|
65. Sizov F. THz radiation detectors: the state of the art. Semicond. Sci. Techn. 2018. 33. P. 123001. https://doi.org/10.1088/1361-6641/aae473 |
|
66. Putley E.H. Indium antimonide submillimeter photoconductive detectors. Appl. Opt. 1965. 4. P. 649-657. https://doi.org/10.1364/AO.4.000649 |
|
67. Arams F., Allen C., Peyton B., Sard E. Millimeter mixing and detection in bulk InSb, Proc. IEEE. 1966. 54. P. 612-622. https://doi.org/10.1109/PROC.1966.4781 |
|
68. Brown E.R., McIntosh K.A., Smith F.W., Manfra M.J., Dennis C.L. Measurements of optical-heterodyne conversion in low-temperature-grown GaAs. Appl. Phys. Lett. 1993. 62. P. 1206-1208. https://doi.org/10.1063/1.108735 |
|
69. Zhang X.-C., Xu J. Introduction to THz Wave Photonics. New York-Dordrecht-Heidelberg-London: Springer, 2010. https://doi.org/10.1007/978-1-4419-0978-7 |
|
70. Adam A.J.L. Review of near-field terahertz measurement methods and their applications. J. Infrared, Millimeter, and Terahertz Waves. 2011. 32. P. 976-1019. https://doi.org/10.1007/s10762-011-9809-2 |
|
71. Dyakonov M., Shur M.S. Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electr. Devices. 1996. 43. P. 1640-1645. https://doi.org/10.1109/16.536809 |
|
72. Lü J.-Q., Shur M.S., Hesler J.L., Sun L., Weikle R. Terahertz detector utilizing two-dimensional electronic fluid. IEEE Electr. Device Lett. 1998. 19. P. 373-375. https://doi.org/10.1109/55.720190 |
|
73. Vicarelli L., Vitiello M.S., Coquillat D., Lombardo A. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Mater. 2012. 11. P. 865-871. https://doi.org/10.1038/nmat3417 |
|
74. Simoens F., Martyrs J. Terahertz real-time imaging uncooled array based on antenna - and cavity-coupled bolometers. Philosoph. Trans. R. Soc. A. 2014. 372. P. 20130111. https://doi.org/10.1098/rsta.2013.0111 |
|
75. Nagatsuma T., Ducournau G., Renaud C.C. Advances in terahertz communications accelerated by photonics. Nature Photonics. 2016. 10. P. 371-379. https://doi.org/10.1038/nphoton.2016.65 |
|
76. Duan G.-H., Jany Ch., Le Liepvre A., Accard A. et al. Hybrid III-V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Select. Topics Quant. Electron. 2014. 20. P. 6100213. https://doi.org/10.1117/12.2044258 |
|
77. Doerr C.R. Silicon photonic integration in telecommunications. Front. Phys. 2015. 3. P. 1-16. https://doi.org/10.3389/fphy.2015.00037 |
|
78. Lequeux J. Early infrared astronomy. J. Astron. History Heritage. 2009. 12. P. 125-140. |
|
79. Ring F.J. Pioneering progress in infrared imaging in medicine. Quantitative InfraRed Thermography J. 2014. 11. P. 57-65. https://doi.org/10.1080/17686733.2014.892667 |
|
80. Ring F.J., Jones B.F. Historical development of thermometry and thermal imaging in medicine, in: M. Diakides, J. D. Bronzino, and D. R. Peterson (Eds.), Medical Infrared Imaging: Principles and Practices. CRC Press, Boca Raton, 2013. P. 2.1-2.6. |
|
81. Jiang L.J., Ng E.Y., Yeo A.C. et al. A perspective on medical infrared imaging. J. Med. Eng. Technol. 2005. 29. P. 257-267. https://doi.org/10.1080/03091900512331333158 |
|
82. Barr E.S. Historical survey of the early development of the infrared spectral region. Amer. J. Phys. 1960. 28. P. 42-54. https://doi.org/10.1119/1.1934975 |
|
83. Langley S.P. The bolometer. Nature. 1881. 25. P. 14-16. https://doi.org/10.1038/025014a0 |
|
84. Rubens H., Snow B.W. On the refraction of rays of great wavelength in rock salt, sylvine, and fluorite. Phil. Mag. 1893. 35. P. 35-45. https://doi.org/10.1080/14786449308620376 |
|
85. Nichols E.F. A method for energy measurements in the infrared spectrum and the properties of the ordinary ray in quartz for waves of great wavelength. Phys. Rev. 1897. 4. P. 297-313. https://doi.org/10.1103/PhysRevSeriesI.4.297 |
|
86. Rubens H., Kurlbaum F. Anwendung der Methode der Restrahlen zur Prufung des Strahlungsgesetzes. Annalen der Physik. 1901. 4. P. 649-666. https://doi.org/10.1002/andp.19013090402 |
|
87. Planck M. Über eine Verbesserung der Wienschen Spektralgleichung. Verhandlungen der Deutschen Physikalischen Gesselschaft. 1900. 2. P. 202-204. |
|
88. Einstein A. Zum gegenwärtigen Stand des Strahlungsproblems. Physikalische Zeitschrift. 1909. 10. P. 185-193. |
|
89. Stuewer R.H. Einstein's revolutionary light-quantum hypothesis. Acta Phys. Polon. B. 2006. 37. P. 543-558. |
|
90. Rubens H., Baeyer O.V. On extremely long waves emitted by the quartz mercury lamp. Phil. Mag. 1911. 21. P. 689-703. https://doi.org/10.1080/14786440508637081 |
|
91. Rubens H., Wood R.W. Focal isolation of long heat-waves. Phil. Mag. 1911. 21. P. 249-261. https://doi.org/10.1080/14786440208637025 |
|
92. Holst G., de Boer J.H., Teves M.C., Veenemans C.F. Foto-electrische cel en inrichting waarmede uit een primair, door directe lichtstralen gevormd beeld een geheel ofnagenoed geheel conform secundair optisch beeld kan. Dutch patent 27062 (1928); British Patent 326200; D.R.P. 535208. |
|
93. Holst G., de Boer J.H., Teves M.C., Veenemans C.F. An apparatus for the transformation of light of long wavelength into light of short wavelength. Physika. 1934. 1. P. 297-305. https://doi.org/10.1016/S0031-8914(34)90036-7 |
|
94. Czerny M. Über Photographie im Ultraroten. Zeitschrift für Physik. 1929. 3, Issue 1-2. P. 1−12. https://doi.org/10.1007/BF01339378 |
|
95. Berz R., Sauer H. The medical use of infrared-thermography. History and recent applications, Thermografie-Kolloquium 2007, Vortrag 04, 1-12, 2007 (www.ndt.net/search/docs.php3?MainSource=61). |
|
96. Schwamm E., Reeh J. Die Ultrarotstrahlung des Menschen und seine Molekular spektroskopie. Hippokrates. 1953. 24. P. 737−742. |
|
97. Ring F.J., Ng E.Y.K. Infrared thermal imaging standards for human fever detection, in: M. Diakides, J.D. Bronzino, D.R. Peterson (Eds.), Medical Infrared Imaging: Principles and Practices. CRC Press, Boca Raton, 2013. P. 22.1−22.5. |
|
98. Fernandez-Cuevas I., Marins J.C.B., Lastras J.A. et al., Classification of factors influencing the use of infrared thermography in humans: A review. Infrared. Phys. Technol. 2015. 71. P. 28-55. https://doi.org/10.1016/j.infrared.2015.02.007 |
|
99. Hardy J.D. The radiation of heat from the human body. J. Clinical Invest. 1934. 13. P. 615-620. https://doi.org/10.1172/JCI100609 |
|
100. Hardy J. The radiation power of human skin in the infrared. Am. J. Physiol. 1939. 127. P. 454-462. https://doi.org/10.1152/ajplegacy.1939.127.3.454 |
|
101. Lloyd-Williams K., Lloyd-Williams F., Handley R. Infrared radiation thermometry in clinical practice. Lancet. 1960. 2. P. 958-959. https://doi.org/10.1016/S0140-6736(60)92028-6 |
|
102. Rogalski A. History of infrared detectors. Opto-Electr. Rev. 2012. 20. P. 279-308. https://doi.org/10.2478/s11772-012-0037-7 |
|
103. Andrews D.H., Bruksch W.F., Zeigler W.T., Blanchard E.R. Attenuated superconductors for measuring infra-red radiation. Rev. Sci. Instrum. 1942. 13. P. 281-291. https://doi.org/10.1063/1.1770037 |
|
104. Andrews D.H., Milton R.M., DeSorbo W. A fast superconducting bolometer. J. Opt. Soc. Am. 1946. 36. P. 518-524. https://doi.org/10.1364/JOSA.36.000518 |
|
105. Zahl H.A., Golay M.J.E. Pneumatic heat detector. Rev. Sci. Instrum. 1946. 17. P. 511-515. https://doi.org/10.1063/1.1770416 |
|
106. Golay M.J.E. A pneumatic infra-red detector. Rev. Sci. Instrum. 1947. 18. P. 357-362. https://doi.org/10.1063/1.1740949 |
|
107. Lawson W.D., Nielson S., Putley E.H., Young A.S. Preparation and properties of HgTe and mixed crystals of HgTe−CdTe. J. Phys. Chem. Sol. 1959. 9. P. 325-329. https://doi.org/10.1016/0022-3697(59)90110-6 |
|
108. Shneider A.D., Gavrishak I.V. Structure and properties of HgTe-CdTe system. Solid State Phys. 1960. 2. P. 2079−2081 (in Russian). |
|
109. Ring E.F.J., and Ammer K. The technique of infrared imaging in medicine. Thermology Intern. 2000. 10. P. 7-14. |
|
110. Ring E.F.J. Standardization of thermal imaging in medicine: Physical and environmental factors, in: M. Gautherie, E. Albert, L. Keith (Eds.), Thermal Assessment of Breast Health. MTP Press Ltd., Lancaster-Boston-The Hague, 1983. P. 29-36. |
|
111. Ammer K. The Glamorgan Protocol for recording and evaluation of thermal images of the human body. Thermology Intern. 2008. 18. P. 125-129. |
|
112. West L.C., Eglash S.J. First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well. Appl. Phys. Lett. 1985. 46. P. 1156-1158. https://doi.org/10.1063/1.95742 |
|
113. https://www.nasa.gov/pdf/723395main_LDCMpresskit2013-final.pdf. |
|
114. Kruse P.W. Uncooled Thermal Imaging. Arrays, Systems and Applications. SPIE Press, Bellingham, 2001. https://doi.org/10.1117/3.415351 |
|
115. Avdelidis N., Gan T.-H., Ibarra-Castanedo C., Maldague X. Infrared thermography as a non-destructive tool for materials characterisation and assessment. Proc. SPIE. 2011. 8013. P. 8013OK. https://doi.org/10.1117/12.887403 |
|
116. Khodayar F., Sojasi S., and Maldague X. Infrared Thermography and NDT: 2050 Horizon. Quantitative InfraRed Thermography J. 2015. 13. P. 210-231. https://doi.org/10.1080/17686733.2016.1200265 |
|
117. Raghavendra U., Acharya U.R., Ng E.Y.K., Tan J.-H., Gudigar A. An integrated index for breast cancer identification using histogram of oriented gradient and kernel locality preserving projection features extracted from thermograms. Quantitative InfraRed Thermography J. 2016. 13. P. 195-209. https://doi.org/10.1080/17686733.2016.1176734 |
|
118. Smith R.A., Jones F.E., Chasmar R.P. The Detection and Measurement of Infrared Radiation. Oxford: Clarendon, 1958. https://doi.org/10.1063/1.3062526 |
|
119. Hudson R.D. Infrared System Engineering. New Jersey: Wiley-Interscience, 1969. |
|
120. Biberman L.M., Sendall R.L. Introduction: A brief history of imaging devices for night vision, in: L.M. Biberman (Ed.), Electro-Optical Imaging: System Performance and Modeling. SPIE Press, Bellingham, 2000. P. 1-1-1-26. |
|
121. Sakai K. Terahertz Optoelectronics. Berlin: Springer, 2005. https://doi.org/10.1007/b80319 |
|
122. Gilmore A.S. High-definition infrared FPAs. Raytheon Technology Today. 2008. Issue 1. P. 4-8. |
|
123. Corsi C. History highlights and future trends of infrared sensors. J. Modern Opt. 2010. 57. P. 1663-1686. https://doi.org/10.1080/09500341003693011 |
|
124. Sclar N. Properties of doped silicon and germanium infrared detectors. Progr. Quant. Elect. 1984. 9. P. 149-257. https://doi.org/10.1016/0079-6727(84)90001-6 |
|
125. Vavilov V. Thermal NDT: historical milestones, state-of-the-art and trends. Quantitative InfraRed Thermography J. 2014. 11. P. 66-83. https://doi.org/10.1080/17686733.2014.897016 |