Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (1) P. 067-079 (2019).
DOI: https://doi.org/10.15407/spqeo22.01.067


References

1. Hochrein T. Markets, availability, notice, and technical performance of terahertz systems: Historic development, present, and trends. J. Infrared, Millimeter, and Terahertz Waves. 2015. 36. P. 235-254.
https://doi.org/10.1007/s10762-014-0124-6
2. Dhillon S.S. et al. (32 Coauthors). The 2017 terahertz science and technology roadmap. J. Phys. D: Appl. Phys. 2017. 50. P. 043001.
3. Walther M., Fischer B.M., Ortner A., Bitzer A. et al. Chemical sensing and imaging with pulsed terahertz radiation. Anal. Bioanal. Chem. 397 (2010) 1009-1017].
https://doi.org/10.1007/s00216-010-3672-1
4. Emerson D.T. The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Trans. Microwave Theory Techn. 1997. 45. P. 2267-2273.
https://doi.org/10.1109/22.643830
5. Aggarwal V. Jagadish Chandra Bose: The real inventor of Marconi's wireless detector; http://web.mit.edu/varun_ag/www/bose_2006.pdf.
6. US Patent 676,332. Apparatus for wireless telegraphy, G. Marconi. Patented June 11, 1901. Application Feb. 23, 1901.
7. Bondyopadhyay P.K. Sir J.C. Bose's diode detector received Marconi's first transatlantic wireless signal of December 1901 (The "Italian Navy coherer" scandal revisited). Proc. IEEE. 1998. 86. P. 259-285.
https://doi.org/10.1109/5.658778
8. Corsi C. TeraHertz: Quasioptics or sub-millimeter waves? History, actual limits and future developments for security systems, in: C. Corsi, F. Sizov (Eds.), THz and Security Applications. Dordrecht: Springer, 2014. P. 1-24.
https://doi.org/10.1007/978-94-017-8828-1_1
9. THz Pioneers. IEEE Trans. THz Sci. Technol. 2012. 2. P. 265-270; 2012. 2. P. 477-484; 2014. 4. P. 137-146; 2014. 4. P. 645-652.
10. Bründermann E., Hübers H.-W., Kimmitt M.F. Terahertz Techniques. Heidelberg: Springer, 2011.
https://doi.org/10.1007/978-3-642-02592-1
11. Gordy W. Early events and some later developments in microwave spectroscopy. J. Mol. Struct. 1983. 97. P. 17-32.
https://doi.org/10.1016/0022-2860(83)90172-2
12. Kimmitt M.F. Restrahlen to T-rays: 100 years of terahertz radiation. J. Biolog. Phys. 2003. 29. P. 77-85.
https://doi.org/10.1023/A:1024498003492
13. Chamberlain J.M. Where optics meets electronics: recent progress in decreasing the terahertz gap, Phil. Trans, R. Soc. Lond. A. 2004. 362. P. 199-213.
https://doi.org/10.1098/rsta.2003.1312
14. Blaney T.G. Signal-to-noise ratio and other characteristics of heterodyne radiation receivers. Space Sci. Rev. 1975. 17. P. 691-702.
https://doi.org/10.1007/BF00727583
15. Richards P. Bolometers for infrared and millimeter waves. J. Appl. Phys. 1994. 76. P. 1-24.
https://doi.org/10.1063/1.357128
16. Chattopadhyay G. Sensor technology at submillimeter wavelength for Space applications. Int. J. Smart Sens. Intell. Systems. 2008. 1. P. 1-20.
https://doi.org/10.21307/ijssis-2017-275
17. Lamarre J.M., Desert F.X., Kirchner T. Background limited infrared and sub-millimeter instruments. Space Sci. Rev. 1995. 74. P. 27-36.
https://doi.org/10.1007/978-94-011-0363-3_4
18. Kangro H. Early History of Planck's Radiation Law. New York: Taylor & Francis, 1976.
19. P Siegel. THz pioneer: Richard S. Saykally - Water, water everywhere... IEEE Trans. Terahertz Sci. Technol. 2012. 2. P. 265-270.
https://doi.org/10.1109/TTHZ.2012.2190870
20. Bose Jagadis Chandra. On a self-recovering coherer and the study of the cohering action of different metals. Proc. IEEE. 1998. 86. P. 244-247 (reprinted from: Bose J.C. On a self-recovering coherer and the study of the cohering action of different metals. Proc. Royal Soc., London. 1899. LXV no. 416. P. 166-172.
https://doi.org/10.1109/JPROC.1998.658776
21. U.S. Patent 755,840. Detector for electrical disturbances, J.C. Bose, filed September 30, 1901 (1904).
22. Pearson G.L. and Brattain W.H. History of semiconductor research. Proc. IRE. 1955. 43. P. 1794-1806.
https://doi.org/10.1109/JRPROC.1955.278042
23. Glagolewa-Arkadiewa A. Short electromagnetic waves of wave-length up to 82 microns. Nature. 1924. 113. P. 640.
https://doi.org/10.1038/113640a0
24. Kostenko A.A., Nosich A.I., Tishchenko I.A. Development of the first Soviet 3-coordinate L-band pulsed radar in Kharkov before WW II. IEEE Antennas Propagat. Mag. 2001. 44. P. 28-49.
https://doi.org/10.1109/74.934901
25. Nosich A.I. Dramatic history and impact of decimeter-wave radar "Zenit" developed in Kharkiv in the 1930s. XXII International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), Dnipro, Ukraine, 25-28 Sept., 2017. P. 11-14.
https://doi.org/10.1109/DIPED.2017.8100546
26. Gordy W. Microwave spectroscopy. Rev. Modern Phys. 1948. 20. P. 668-689.
https://doi.org/10.1103/RevModPhys.20.668
27. Burrus C.A., Jr., Gordy W. Submillimeter wave spectroscopy. Phys. Rev. 1954. 93. P. 897-898.
https://doi.org/10.1103/PhysRev.93.897
28. Alpher V.S. Ralph A. Alpher, George Antonovich Gamow, and the prediction of the cosmic microwave background radiation. Asian J. Phys. 2014. 23. P. 17-26.
29. Fixsen D.J. The temperature of the cosmic microwave background. Astrophys. J. 2009. 707. P. 916-920.
https://doi.org/10.1088/0004-637X/707/2/916
30. Lineweaver Ch.H. Cosmic microwave background, in: Discoveries in Modern Science: Exploration, Invention, Technology, J. Trefil (Ed.). Farmington Hills: Macmillan, 2014. P. 224-229.
31. Penzias A.A., Wilson R.W. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 1965. 142. P. 419-421.
https://doi.org/10.1086/148307
32. Warnecke R., Guenard P. Some recent work in France on new types of valves for the highest radio frequencies. Proc. IEE -Radio Commun. Eng. 1953. 100, no. 68, pt. III. P. 351-362.
https://doi.org/10.1049/pi-3.1953.0073
33. Read W.T. A proposed high frequency negative resistance diode. Bell. Syst. Tech. J. 1958. 37. P. 401-446.
https://doi.org/10.1002/j.1538-7305.1958.tb01527.x
34. Tager A.S. The avalanche-transit diode and its use in microwaves. Sov. Phys. Usp. 1967. 9. P. 892-912.
https://doi.org/10.1070/PU1967v009n06ABEH003231
35. Jonston R.L., De Lоасh В.С., Соhеn В.G. A silicon diode microwave oscillator. Bell Syst. Techn. J. Briefs. 1965. 44. P. 369.
https://doi.org/10.1002/j.1538-7305.1965.tb01667.x
36. Brand F.A., Higgins V.I., Baranowski L.I., Druesne M.A. Microwave generation from avalanching varactor diodes. Proc. IEEE. 1965. 53. P. 1276-1277.
https://doi.org/10.1109/PROC.1965.4225
37. Gunn J.B. Microwave oscillation of current in III-V semiconductors. Solid State Commun. 1963. 1. P. 88-91.
https://doi.org/10.1016/0038-1098(63)90041-3
38. Crocker A., Gebbie H.A., Kimmitt M.F., Mathias L.E.S. Stimulated emission in the far infra-red. Nature. 1964. 201. P. 250-251.
https://doi.org/10.1038/201250a0
39. Chang T.Y., Bridges T.J. Laser action at 452, 496, and 541 μm in optically pumped CH3F. Opt. Commun. 1970. 1. P. 423-426.
https://doi.org/10.1016/0030-4018(70)90169-0
40. Richards P.L. High-resolution Fourier transform spectroscopy in the far-infrared. J. Opt. Soc. Am. 1964. 54. P. 1474-1484.
https://doi.org/10.1364/JOSA.54.001474
41. Webb S.J., Dodds D.D. Inhibition of bacterial cell growth by 136 gc microwaves, Nature. 1968. 218. P. 374-375.
https://doi.org/10.1038/218374a0
42. Blackman C.F., Benane S.G., Weil C.M., Ali J.S. Effects of non-ionizing electromagnetic radiation on single-cell biologic systems. Annals of the New York Acad. Sci. 1975. 247. P. 352-366.
https://doi.org/10.1111/j.1749-6632.1975.tb36010.x
43. Nicolson A.M. Broad-band microwave transmission characteristics from a single measurement of the transient response. IEEE Transactions on Instrumentation and Measurement. 1968. 17, No 4. P. 395-402.
https://doi.org/10.1109/TIM.1968.4313741
44. Schottky W., Stormer R., Waibel F. Uber die Gleichrichterwirkungenan der Grenze von Kupferoxydul gegen aufgebrachte Metallelektroden (On the rectifying action of cuprous oxide in contact with other metals). Z. Hochfrequenz. 1931. 37. P. 162-167, 175-187.
45. Kreisler A.J.M. Submillimeter wave applications of submicron Schottky diodes. Proc. SPIE. 1966. 666. P. 51-63.
46. Richards P.L., Shen T.M., Harris R.E., Lloyd F.L. Quasiparticle heterodyne mixing in SIS tunnel junctions. Appl. Phys. Lett. 1979. 34. P. 345-347.
https://doi.org/10.1063/1.90782
47. Faries W., Gehring K.A., Richards P.L., Shen Y.R. Tunable far-infrared radiation generated from difference frequency between two ruby lasers. Phys. Rev. 1969. 180. P. 363-365.
https://doi.org/10.1103/PhysRev.180.363
48. Yajima T., Takeuchi N. Far-infrared difference frequency generation by picosecond laser pulses. Jap. J. Appl. Phys.1970. 9. P. 1361-1371.
https://doi.org/10.1143/JJAP.9.1361
49. Kazarinov R.F., Suris R.A. Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice. Fizika i Tekhnika Poluprovodnikov. 1971. 5. P. 797-800 (in Russian).
50. Faist J., Capasso F., Sivco D., Cirtori C. et al. Quantum cascade laser. Science. 1994. 264. P. 553-556.
https://doi.org/10.1126/science.264.5158.553
51. Barker D.H., Hodges D.T., Hartwick T.S. Far infrared imagery. Proc. SPIE. 1975. 67. P. 27-34.
52. Auston D.H. Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 1975. 26. P. 101-103.
https://doi.org/10.1063/1.88079
53. Auston D.H., Smith P.R. Generation and detection of millimeter waves by picosecond photoconductivity. Appl. Phys. Lett. 1983. 43. P. 631-633.
https://doi.org/10.1063/1.94468
54. Kazanskii A.G., Richards P.L., Haller E.E. Far infrared photoconductivity of uniaxially stressed germanium. Appl. Phys. Lett. 1977. 31. P. 496-497.
https://doi.org/10.1063/1.89755
55. Tuengler P., Keilmann F., Genzel L. Search for millimeter microwave effects on enzyme or protein functions. Zeitschrift fur Naturforschung C. 1979. 34. P. 60-63.
https://doi.org/10.1515/znc-1979-1-214
56. Hintzsce H., Stopper H. Effects of terahertz radiation on biological systems. Critical Rev. Environmental Sci. Technol. 2012. 42. P. 2408-2434.
https://doi.org/10.1080/10643389.2011.574206
57. Mourou G., Stancampiano C.V., Antonetti A., Orszag A. Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch. Appl. Phys. Lett. 1981. 39. P. 295-296.
https://doi.org/10.1063/1.92719
58. Auston D.H., Cheung K.P., Smith P.R. Picosecond photoconducting Hertzian dipoles, Appl. Phys. Lett. 1984. 45. P. 284-286.
https://doi.org/10.1063/1.95174
59. Fattinger C., Grischkowsky D. Terahertz beams. Appl. Phys. Lett. 1989. 54. P. 490-492.
https://doi.org/10.1063/1.100958
60. Smith P.R., Auston D.H., Nuss M.C. Subpicosecond photoconducting dipole antenna. IEEE J. Quantum Electron. 1988. 24. P. 255-260.
https://doi.org/10.1109/3.121
61. Spence D.E., Kean P.N., Sibbett W. Sub-100 fs pulse generation from a self-mode-locked titanium: sapphire laser. Conference on Lasers and Electro-optics, CLEO, Technical Digest Series: Opt. Soc. of America, 1990. P. 619-620.
62. Auston D.H., Nuss M.C. Electrooptic generation and detection of femtosecond electrical transients. IEEE J. Quant.Electr. 1988. 24. P. 184-197.
https://doi.org/10.1109/3.114
63. Elias L.R., Hu J., Ramian G. The UCSB electrostatic accelerator free electron laser: First operation. Nucl. Instrum. Meth. Phys. Res. A. 1984. 237. P. 203-206.
https://doi.org/10.1016/0168-9002(85)90349-3
64. Gershenzon E.M., Gershenson M.E., Goltsman G.N., Semenov A.D., Sergeev A.V. On the limiting characteristics of high-speed superconducting bolometers. Sov. Phys. Tech. Phys. 1989. 34. P. 195-201 (in Russian).
65. Sizov F. THz radiation detectors: the state of the art. Semicond. Sci. Techn. 2018. 33. P. 123001.
https://doi.org/10.1088/1361-6641/aae473
66. Putley E.H. Indium antimonide submillimeter photoconductive detectors. Appl. Opt. 1965. 4. P. 649-657.
https://doi.org/10.1364/AO.4.000649
67. Arams F., Allen C., Peyton B., Sard E. Millimeter mixing and detection in bulk InSb, Proc. IEEE. 1966. 54. P. 612-622.
https://doi.org/10.1109/PROC.1966.4781
68. Brown E.R., McIntosh K.A., Smith F.W., Manfra M.J., Dennis C.L. Measurements of optical-heterodyne conversion in low-temperature-grown GaAs. Appl. Phys. Lett. 1993. 62. P. 1206-1208.
https://doi.org/10.1063/1.108735
69. Zhang X.-C., Xu J. Introduction to THz Wave Photonics. New York-Dordrecht-Heidelberg-London: Springer, 2010.
https://doi.org/10.1007/978-1-4419-0978-7
70. Adam A.J.L. Review of near-field terahertz measurement methods and their applications. J. Infrared, Millimeter, and Terahertz Waves. 2011. 32. P. 976-1019.
https://doi.org/10.1007/s10762-011-9809-2
71. Dyakonov M., Shur M.S. Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electr. Devices. 1996. 43. P. 1640-1645.
https://doi.org/10.1109/16.536809
72. Lü J.-Q., Shur M.S., Hesler J.L., Sun L., Weikle R. Terahertz detector utilizing two-dimensional electronic fluid. IEEE Electr. Device Lett. 1998. 19. P. 373-375.
https://doi.org/10.1109/55.720190
73. Vicarelli L., Vitiello M.S., Coquillat D., Lombardo A. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Mater. 2012. 11. P. 865-871.
https://doi.org/10.1038/nmat3417
74. Simoens F., Martyrs J. Terahertz real-time imaging uncooled array based on antenna - and cavity-coupled bolometers. Philosoph. Trans. R. Soc. A. 2014. 372. P. 20130111.
https://doi.org/10.1098/rsta.2013.0111
75. Nagatsuma T., Ducournau G., Renaud C.C. Advances in terahertz communications accelerated by photonics. Nature Photonics. 2016. 10. P. 371-379.
https://doi.org/10.1038/nphoton.2016.65
76. Duan G.-H., Jany Ch., Le Liepvre A., Accard A. et al. Hybrid III-V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Select. Topics Quant. Electron. 2014. 20. P. 6100213.
https://doi.org/10.1117/12.2044258
77. Doerr C.R. Silicon photonic integration in telecommunications. Front. Phys. 2015. 3. P. 1-16.
https://doi.org/10.3389/fphy.2015.00037
78. Lequeux J. Early infrared astronomy. J. Astron. History Heritage. 2009. 12. P. 125-140.
79. Ring F.J. Pioneering progress in infrared imaging in medicine. Quantitative InfraRed Thermography J. 2014. 11. P. 57-65.
https://doi.org/10.1080/17686733.2014.892667
80. Ring F.J., Jones B.F. Historical development of thermometry and thermal imaging in medicine, in: M. Diakides, J. D. Bronzino, and D. R. Peterson (Eds.), Medical Infrared Imaging: Principles and Practices. CRC Press, Boca Raton, 2013. P. 2.1-2.6.
81. Jiang L.J., Ng E.Y., Yeo A.C. et al. A perspective on medical infrared imaging. J. Med. Eng. Technol. 2005. 29. P. 257-267.
https://doi.org/10.1080/03091900512331333158
82. Barr E.S. Historical survey of the early development of the infrared spectral region. Amer. J. Phys. 1960. 28. P. 42-54.
https://doi.org/10.1119/1.1934975
83. Langley S.P. The bolometer. Nature. 1881. 25. P. 14-16.
https://doi.org/10.1038/025014a0
84. Rubens H., Snow B.W. On the refraction of rays of great wavelength in rock salt, sylvine, and fluorite. Phil. Mag. 1893. 35. P. 35-45.
https://doi.org/10.1080/14786449308620376
85. Nichols E.F. A method for energy measurements in the infrared spectrum and the properties of the ordinary ray in quartz for waves of great wavelength. Phys. Rev. 1897. 4. P. 297-313.
https://doi.org/10.1103/PhysRevSeriesI.4.297
86. Rubens H., Kurlbaum F. Anwendung der Methode der Restrahlen zur Prufung des Strahlungsgesetzes. Annalen der Physik. 1901. 4. P. 649-666.
https://doi.org/10.1002/andp.19013090402
87. Planck M. Über eine Verbesserung der Wienschen Spektralgleichung. Verhandlungen der Deutschen Physikalischen Gesselschaft. 1900. 2. P. 202-204.
88. Einstein A. Zum gegenwärtigen Stand des Strahlungsproblems. Physikalische Zeitschrift. 1909. 10. P. 185-193.
89. Stuewer R.H. Einstein's revolutionary light-quantum hypothesis. Acta Phys. Polon. B. 2006. 37. P. 543-558.
90. Rubens H., Baeyer O.V. On extremely long waves emitted by the quartz mercury lamp. Phil. Mag. 1911. 21. P. 689-703.
https://doi.org/10.1080/14786440508637081
91. Rubens H., Wood R.W. Focal isolation of long heat-waves. Phil. Mag. 1911. 21. P. 249-261.
https://doi.org/10.1080/14786440208637025
92. Holst G., de Boer J.H., Teves M.C., Veenemans C.F. Foto-electrische cel en inrichting waarmede uit een primair, door directe lichtstralen gevormd beeld een geheel ofnagenoed geheel conform secundair optisch beeld kan. Dutch patent 27062 (1928); British Patent 326200; D.R.P. 535208.
93. Holst G., de Boer J.H., Teves M.C., Veenemans C.F. An apparatus for the transformation of light of long wavelength into light of short wavelength. Physika. 1934. 1. P. 297-305.
https://doi.org/10.1016/S0031-8914(34)90036-7
94. Czerny M. Über Photographie im Ultraroten. Zeitschrift für Physik. 1929. 3, Issue 1-2. P. 1−12.
https://doi.org/10.1007/BF01339378
95. Berz R., Sauer H. The medical use of infrared-thermography. History and recent applications, Thermografie-Kolloquium 2007, Vortrag 04, 1-12, 2007 (www.ndt.net/search/docs.php3?MainSource=61).
96. Schwamm E., Reeh J. Die Ultrarotstrahlung des Menschen und seine Molekular spektroskopie. Hippokrates. 1953. 24. P. 737−742.
97. Ring F.J., Ng E.Y.K. Infrared thermal imaging standards for human fever detection, in: M. Diakides, J.D. Bronzino, D.R. Peterson (Eds.), Medical Infrared Imaging: Principles and Practices. CRC Press, Boca Raton, 2013. P. 22.1−22.5.
98. Fernandez-Cuevas I., Marins J.C.B., Lastras J.A. et al., Classification of factors influencing the use of infrared thermography in humans: A review. Infrared. Phys. Technol. 2015. 71. P. 28-55.
https://doi.org/10.1016/j.infrared.2015.02.007
99. Hardy J.D. The radiation of heat from the human body. J. Clinical Invest. 1934. 13. P. 615-620.
https://doi.org/10.1172/JCI100609
100. Hardy J. The radiation power of human skin in the infrared. Am. J. Physiol. 1939. 127. P. 454-462.
https://doi.org/10.1152/ajplegacy.1939.127.3.454
101. Lloyd-Williams K., Lloyd-Williams F., Handley R. Infrared radiation thermometry in clinical practice. Lancet. 1960. 2. P. 958-959.
https://doi.org/10.1016/S0140-6736(60)92028-6
102. Rogalski A. History of infrared detectors. Opto-Electr. Rev. 2012. 20. P. 279-308.
https://doi.org/10.2478/s11772-012-0037-7
103. Andrews D.H., Bruksch W.F., Zeigler W.T., Blanchard E.R. Attenuated superconductors for measuring infra-red radiation. Rev. Sci. Instrum. 1942. 13. P. 281-291.
https://doi.org/10.1063/1.1770037
104. Andrews D.H., Milton R.M., DeSorbo W. A fast superconducting bolometer. J. Opt. Soc. Am. 1946. 36. P. 518-524.
https://doi.org/10.1364/JOSA.36.000518
105. Zahl H.A., Golay M.J.E. Pneumatic heat detector. Rev. Sci. Instrum. 1946. 17. P. 511-515.
https://doi.org/10.1063/1.1770416
106. Golay M.J.E. A pneumatic infra-red detector. Rev. Sci. Instrum. 1947. 18. P. 357-362.
https://doi.org/10.1063/1.1740949
107. Lawson W.D., Nielson S., Putley E.H., Young A.S. Preparation and properties of HgTe and mixed crystals of HgTe−CdTe. J. Phys. Chem. Sol. 1959. 9. P. 325-329.
https://doi.org/10.1016/0022-3697(59)90110-6
108. Shneider A.D., Gavrishak I.V. Structure and properties of HgTe-CdTe system. Solid State Phys. 1960. 2. P. 2079−2081 (in Russian).
109. Ring E.F.J., and Ammer K. The technique of infrared imaging in medicine. Thermology Intern. 2000. 10. P. 7-14.
110. Ring E.F.J. Standardization of thermal imaging in medicine: Physical and environmental factors, in: M. Gautherie, E. Albert, L. Keith (Eds.), Thermal Assessment of Breast Health. MTP Press Ltd., Lancaster-Boston-The Hague, 1983. P. 29-36.
111. Ammer K. The Glamorgan Protocol for recording and evaluation of thermal images of the human body. Thermology Intern. 2008. 18. P. 125-129.
112. West L.C., Eglash S.J. First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well. Appl. Phys. Lett. 1985. 46. P. 1156-1158.
https://doi.org/10.1063/1.95742
113. https://www.nasa.gov/pdf/723395main_LDCMpresskit2013-final.pdf.
114. Kruse P.W. Uncooled Thermal Imaging. Arrays, Systems and Applications. SPIE Press, Bellingham, 2001.
https://doi.org/10.1117/3.415351
115. Avdelidis N., Gan T.-H., Ibarra-Castanedo C., Maldague X. Infrared thermography as a non-destructive tool for materials characterisation and assessment. Proc. SPIE. 2011. 8013. P. 8013OK.
https://doi.org/10.1117/12.887403
116. Khodayar F., Sojasi S., and Maldague X. Infrared Thermography and NDT: 2050 Horizon. Quantitative InfraRed Thermography J. 2015. 13. P. 210-231.
https://doi.org/10.1080/17686733.2016.1200265
117. Raghavendra U., Acharya U.R., Ng E.Y.K., Tan J.-H., Gudigar A. An integrated index for breast cancer identification using histogram of oriented gradient and kernel locality preserving projection features extracted from thermograms. Quantitative InfraRed Thermography J. 2016. 13. P. 195-209.
https://doi.org/10.1080/17686733.2016.1176734
118. Smith R.A., Jones F.E., Chasmar R.P. The Detection and Measurement of Infrared Radiation. Oxford: Clarendon, 1958.
https://doi.org/10.1063/1.3062526
119. Hudson R.D. Infrared System Engineering. New Jersey: Wiley-Interscience, 1969.
120. Biberman L.M., Sendall R.L. Introduction: A brief history of imaging devices for night vision, in: L.M. Biberman (Ed.), Electro-Optical Imaging: System Performance and Modeling. SPIE Press, Bellingham, 2000. P. 1-1-1-26.
121. Sakai K. Terahertz Optoelectronics. Berlin: Springer, 2005.
https://doi.org/10.1007/b80319
122. Gilmore A.S. High-definition infrared FPAs. Raytheon Technology Today. 2008. Issue 1. P. 4-8.
123. Corsi C. History highlights and future trends of infrared sensors. J. Modern Opt. 2010. 57. P. 1663-1686.
https://doi.org/10.1080/09500341003693011
124. Sclar N. Properties of doped silicon and germanium infrared detectors. Progr. Quant. Elect. 1984. 9. P. 149-257.
https://doi.org/10.1016/0079-6727(84)90001-6
125. Vavilov V. Thermal NDT: historical milestones, state-of-the-art and trends. Quantitative InfraRed Thermography J. 2014. 11. P. 66-83.
https://doi.org/10.1080/17686733.2014.897016