Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (1) P. 080-087 (2019).
DOI: https://doi.org/10.15407/spqeo22.01.080


References

1. Yun-Seng Lim, Lo Chin Kim, Geok Bee Teh, Unsaturated polyester resin blended with MMA as potential host matrix for luminescent solar concentrator. Renewable Energy. 2012. 45. P. 156-162. DOI: 10.1016/j.renene.2012.02.025.
https://doi.org/10.1016/j.renene.2012.02.025
2. Bende Е.Е., Slooff L.H., Burgers A.R., van Sагк W.G.J.H.M., Кеnntdy M. Cost & efficiency optimisation of the fluorescent solar-concentrator. The 23rd European photovoltaic solar energy conference, Valencia, Spain, September 1-5, 2008.
3. Mansour A.F., El-Shaarawy M.G., El-Bashir S.M., El-Mansy M.K., Hammam M. A qualitative study and field performance for a fluorescent solar collec-tor. Polymer Testing. 2002. 21, No 3. P. 277e81.
https://doi.org/10.1016/S0142-9418(01)00082-4
4. Meinardi F., Bruni F. & Brovelli S. Luminescent solar concentrators for building-integrated photovoltaics. Nature Rev. Mater. 2017. 2. Article number 17072. DOI: 10.1038/natrevmats.2017.72.
https://doi.org/10.1038/natrevmats.2017.72
5. Wilton S.R. Monte Carlo Ray-tracing Simulation for Optimizing Luminescent Solar Concentrators. A Thesis Degree of Master of Science. The Pennsyl-vania State University, The Graduate School Col-lege of Engineering Science, May 2012; https: //etda.libraries.psu.edu/files/final_submissions/7055.
6. Meyer T.J.J. Photon Transport in Fluorescent Solar Collectors. Thesis for the degree of Doctor of Philosophy, July 2009. University of Southampton faculty of engineering, science and mathematic school of engineering sciences materials research group; http://eprints.soton.ac.uk.
7. Gallagher S.J., Rowan B.C., Doran J., Norton B. Quantum dot solar concentrator: Device optimization using spectroscopic techniques. Solar Energy. 2007. 81. P. 540-547.
https://doi.org/10.1016/j.solener.2006.07.006
8. Kulish M.R., Kostylyov V.P., Sachenko A.V., Sokolovskyi I.O., Khomenko D.V., Shkrebtii A.I. Luminescent converter of solar light into electrical energy. Review. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. 19, No 3. P. 229-247.
https://doi.org/10.15407/spqeo19.03.229
9. Wilson L.R. Luminescent Solar Concentrators: A Study of Optical Properties, Reabsorption and Device Optimisation. Submitted for the degree of Doctor of Philosophy (Ph.D.) on completion of research conducted at the Department of Mechanical Engineering School of Engineering & Physical Sciences. Heriot-Watt University Edinburgh, EH14 4AS United Kingdom. May 2010.
10. Voronkova Ye.M., Grechushnikov B.N., Distler G.I., Petrov I.P. Optical Materials for Infrared Technics. Moscow: Nauka, 1965 (in Russian).
11. ASTM G173-03 Tables: Extraterrestrial Spectrum, Terrestrial Global 37 deg South Facing Tilt & Direct Normal + Circumsolar; http://rredc.nrel.gov/solar/spectra/am1.5/
12. Measurement of Optical Characteristic of Plastic by UH4150 Spectrophotometer; https://www.hitachi-hightech.com/products/images/8414/uh4150_data1_e.pdf.
13. http://www.technicalglass.com/fused_quartz_transmission.html.
14. Fused Silica (SiO2) IR Grade - International Crystal Laboratories; http://www.internationalcrystal.net/optics_08.htm.
15. Fused Silica IR Grade (SiO2); https://www.janis.com/Libraries/Window_Transmissions/FusedSilicaIRGrade_SiO2_TransmissionCurveDataSheet.sflb.ashx.
16. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6973&tabname=N-BK7.
17. Beadie G., Brindza M., Flynn R.A., Rosenberg A., and Shirk J.S. Refractive index measurements of poly(methyl methacrylate) (PMMA) from 0.4-1.6 μm. Appl. Opt. 2015. 54. P. F139-F143.
https://doi.org/10.1364/AO.54.00F139
18. Malitson I.H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 1965. 55. P. 1205-1208.
https://doi.org/10.1364/JOSA.55.001205
19. SCHOTT Zemax catalog 2017-01-20b (http://www.schott.com).
20. Ren F., Zhang L.Y., Xiao X.H., Cai G.X., Fan L.X., Liao L. and Jiang C.Z. Controlling the growth of ZnO quantum dots embedded in silica by Zn/F se-quential ion implantation and subsequent annealing. Nanotechnology. 2008. 19, No 15, Р. 155610. https://doi.org/10.1088/0957-4484/19/15/155610.
https://doi.org/10.1088/0957-4484/19/15/155610
21. Fisher M. Optical Sensing with CdSe Quantum Dots in Condensed Phase Media. Electronic Theses, Treatises and Dissertations. 2009. Paper 4449.
22. Qiangbin Wang, Nora Iancu, and Dong-Kyun Seo. Preparation of Large Transparent Silica Monoliths with Embedded Photoluminescent CdSe@ZnS Core/Shell Quantum Dots. Chem. Mater. 2005. 17. P. 4762-4764.
https://doi.org/10.1021/cm050962a
23. Vargin V.V. Production of Colour Glass. Moscow-Leningrad: Publ. House "Gizlegprom", 1940 (in Russian).
24. French R.H., Rodríguez-Parada J.M., Yang M.K. et al. Optical properties of polymeric materials for concentrator photovoltaic systems. Solar Energy Materials & Solar Cells. 2011. 95. P. 2077-2086.
https://doi.org/10.1016/j.solmat.2011.02.025
25. Measurement of Optical Characteristic of Plastic by UH4150 Spectrophotometer - An Example of High Throughput Measurements in the UV, Visible and Near-Infrared Regions; http://www.hitachi-hightech.com/products/images/8414/uh4150_data1_e.pdf.
26. Knoll W. Optical Properties of Polymers, Materials Science and Technology. WILEY-VCH Verlag GmbH & Co KGaA; https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527603978.mst0143.
27. Stein R.S., and Finkelstein R.S. Optical properties of polymers. Ann. Rev. Phys. Chem. 1973. 24. P. 207-234; https://doi.org/10.1146/annurev. pc.24.100173.001231.
https://doi.org/10.1146/annurev.pc.24.100173.001231
28. Li S., Lin M.M., Toprak M.S., Do Kyung Kim, and Muhammed M. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 2010. DOI: 1: 10.3402/nano.v1.0.5214.
https://doi.org/10.3402/nano.v1i0.5214
29. Altintas Y., Talpur M.Y., and Mutlugün E. Cd-free quantum dot pellets for efficient white light generation. Opt. Exp. 2017. 25, No 23. P. 28371.
https://doi.org/10.1364/OE.25.028371
30. Samokhvalova P., Linkova P., Michel J., Molinari M. and Nabiev I. CdSe/ZnS photoluminescence quantum yield of CdSe-ZnS/CdS/ZnS core-multishell quantum dots approaches 100% due to enhancement of charge carrier confinement. Proc. SPIE. 2014. 8955. P. 89550S-1; doi: 10.1117/12.2040196.
https://doi.org/10.1117/12.2040196
31. Meyer T.J.J., Hlavaty J., Smith L. et al. Ray racing techniques applied to the modelling of fluorescent solar collectors. Proc. SPIE. 2009. 7211. P. 72110N.
https://doi.org/10.1117/12.810922