Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (1) P. 092-097 (2019).
DOI: https://doi.org/10.15407/spqeo22.01.092


References

1. Silicon Carbide. V. 2: Power Devices and Sensors. P. Friedrichs, T. Kimoto, L. Ley, G. Pensl (eds.). Wiley-VCH Verlag GmbH, Weinheim, 2011.
2. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. T. Kimoto and J.A. Cooper (eds.). Wiley-IEEE Press, 2014.
3. Gorin S.N. and Ivanova L.M. Cubic silicon carbide (3C-SiC): Structure and properties of single crystals grown by thermal decomposition of methyl trichlorosilane in hydrogen. phys. status solidi (b). 1997. 202. P. 221-245; https://doi.org/10.1002/1521- 3951(199707)202:1<221::AID-PSSB221> 3.0.CO;2-L.
https://doi.org/10.1002/1521-3951(199707)202:1<221::AID-PSSB221>3.0.CO;2-L
4. Suttrop W., Pensl G., Lanig P. Boron-related deep centers in 6H-SiC. Appl. Phys. A. 1990. 51. P. 231-237; https://doi.org/10.1134/1.1187657.
https://doi.org/10.1134/1.1187657
5. Lebedev A.A. Deep level centers in silicon carbide: A review. Semiconductors. 1999. 33. P. 107-130.
https://doi.org/10.1134/1.1187657
6. Hagen S.H., Kemenade A.W.C. On the role of boron in the luminescence of silicon carbide doped with nitrogen and boron. physica status solidi (a). 1976. 33, No 1. P. 97-105. DOI: 10.1002/pssa.2210330109.
https://doi.org/10.1002/pssa.2210330109
7. Kuwabara H., Yamada S. Free-to-bound transition in -SiC doped with boron. physica status solidi (a). 1975. 30. P. 739-746; https://doi.org/10.1002/pssa.2210300234.
https://doi.org/10.1002/pssa.2210300234
8. M. Syväjärvi, Ma Quanbao, Jokubavicius V., Galeckas A. et al. Cubic silicon carbide as a potential photovoltaic material. Solar Energy Materials & Solar Cells. 2016. 145. P. 104-108; doi: 10.1016/j.solmat.2015.08.029.
https://doi.org/10.1016/j.solmat.2015.08.029
9. Bubulis A., Voronov S.A., Genkin A.M., Bratus T.I., Rodionov V.N. Thermoanemometery based on polycrystalline silicon carbide cubic modification. Bulletin of National Technical University of Ukraine "Kyiv Politechnic Institute, Series INSTRUMENT MAKING. 2016. 52, No 2. P. 42-47.
https://doi.org/10.20535/1970.52(2).2016.92763
10. Altaisky Y.M., Pletjushkin A.A., Rodionov V.N. The temperature dependence of the photocurrent in cubic silicon carbide. Ukr. J. Phys. 1985. 30, No 9. P. 1417-1420.
11. Altaisky Y.M., Rodionov V.N. About main parameters of the recombination centers in cubic silicon carbide. Ukr. J. Phys. 1985. 30, No 10. P. 1512-1515.
12. Rodionov V.N., Bratus' V.Ya. Influence of nitrogen impurity on radiative and nonradiative recombination in cubic silicon carbide. Ukr. J. Phys. 2001. 46. P. 979-984.
13. O.V. Aleksandrov, E.N. Mokhov. Model of boron diffusion from gas phase in silicon carbide. Semiconductors. 2011. 45, No 6. P. 705-712. DOI: 10.1134/S1063782611060029.
https://doi.org/10.1134/S1063782611060029
14. Baran N.P., V Bratus'.Ya., Bugai A.A., Vikhnin V.S., Klimov A.A., Maksimenko V.M., Petrenko T.L., Romanenko V.V. Electron spin resonance of boron in cubic SiC: manifestation of the Jahn-Teller effect. Phys. Solid State. 1993. 35, No 11. P. 1544-1548.
15. Baranov P.G., Mokhov E.N. Electron paramagnetic resonance of deep boron in silicon carbide. Semicond. Sci. Technol. 1996. 11. P. 489-494; https://doi.org/10.1088/0268-1242/11/4/005.
https://doi.org/10.1088/0268-1242/11/4/005
16. Petrenko T.T., Petrenko T.L. Density functional theory study of the shallow boron impurity in 3C-SiC and comparison with experimental data. Phys. Rev. B. 2016. 93. P. 165203; https://doi.org/10.1103/PhysRevB.93.165203.
https://doi.org/10.1103/PhysRevB.93.165203
17. van Duijn-Arnold A., Ikoma T., Poluektov O.G., Baranov P.G., Mokhov E.N., Schmidt J. Electronic structure of the deep boron acceptor in boron-doped 6H-SiC. Phys. Rev. B. 1998. 57. P. 1607-1619.
https://doi.org/10.1103/PhysRevB.57.1607
18. Ballandovich V.S., Mokhov E.N. Annealing of deep boron centers in silicon carbide. Semiconductors. 2002. 36. P. 160-166.
https://doi.org/10.1134/1.1453430
19. Violin E.E. and Kholuyanov G.F. Extraction of carriers by the field of the p-n junction and mechanism of electroluminescence in SiC. Sov. Phys. Solid State. 1966. 8. P. 2716-2718.
20. Lyubchenko А.V., Sheinkman М.K. The temperature quenching of the photocurrent and photoluminescence in wideband semiconductors. Ukr. J. Phys. 1973. 18, No 2. P. 291-299.