1. Avouris P., Xia F. Graphene applications in electro-nics and photonics. MRS Bullet. 2012. 37. P. 1225-1234. https://doi.org/10.1557/mrs.2012.206. https://doi.org/10.1557/mrs.2012.206 |
|
2. Choi W., Lahiri I., Seelaboyina R., Kang Y.S. Synthesis of graphene and its applications: A review. Critical Reviews in Solid State and Materials Sciences. 35 (2010) 52-71. https://doi.org/10.1080/10408430903505036. https://doi.org/10.1080/10408430903505036 |
|
3. Kulkarni G.S., Reddy K., Zhong Z., Fan X. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat Commun. 2014. 4376. P. 1-7; doi: 10.1038/ncomms5376. https://doi.org/10.1038/ncomms5376 |
|
4. Karim M.R., Hatakeyama K., Matsui T. et al. Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 2013. 135. P. 8097-8100; doi: 10.1021/ja401060q. https://doi.org/10.1021/ja401060q |
|
5. Xinglin Yu, Xiangdong Chen, Xing Ding. High-sensitivity and low-hysteresis humidity sensor based on hydrothermally reduced graphene oxide/nanodiamond. Sensors and Actuators, B: Chem. 2019. 283. P. 761-768; doi: 10.1016/j.snb.2018.12.057. https://doi.org/10.1016/j.snb.2018.12.057 |
|
6. Prezioso S., Perrozzi F., Giancaterini L., Cantalini C., Treossi E., Palermo V., Nardone M., Santucci S., Ottaviano L. Graphene oxide as practical solution to high sensitivity gas sensing. J. Phys. Chem. C. 2013. 117, No 20. P. 10683-10690; doi: 10.1021/jp3085759. https://doi.org/10.1021/jp3085759 |
|
7. Hwang S., Lim J., Park H.G. et al. Chemical vapor sensing properties of graphene based on geometrical evaluation. Current Appl. Phys. 2012. 12. P. 1017-1022. DOI: 10.1016/j.cap.2011.12.021. https://doi.org/10.1016/j.cap.2011.12.021 |
|
8. Pandey P.A., Wilson N.R., Covington J.A. Pd-doped reduced graphene oxide sensing films for H2 detection. Sensors and Actuators, B: Chem. 2013. 183. P. 478-487. http://dx.doi.org/10.1016/j.snb.2013.03.089. https://doi.org/10.1016/j.snb.2013.03.089 |
|
9. Wu Z.-S., Ren W., Gao L., Liu B., Jiang C., Cheng H.-M. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon. 2009. 47. P. 493-499. DOI: 10.1016/j.carbon.2008.10.031. https://doi.org/10.1016/j.carbon.2008.10.031 |
|
10. Stankovich S., Dikin D.A., Piner R.D. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007. 45. P. 1558-1565. DOI: 10.1016/j.carbon.2007.02.034. https://doi.org/10.1016/j.carbon.2007.02.034 |
|
11. Jung I., Dikin D.A., Piner R.D., Ruoff R.S., Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures. Nano Lett., 2008. 8, No. 12. P. 4283-4287. DOI:10.1021/nl8019938. https://doi.org/10.1021/nl8019938 |
|
12. Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958. 80, No 6. P. 1339-1339. DOI: 10.1021/ja01539a017. https://doi.org/10.1021/ja01539a017 |
|
13. Slobodian O.M., Lytvyn P.M., Nikolenko A.S. et al. Low-temperature reduction of graphene oxide: electrical conductance and scanning Kelvin probe force microscopy. Nanoscale Res. Lett. 2018. 13, No 1. P. 139; doi: 10.1186/s11671-018-2536-z. https://doi.org/10.1186/s11671-018-2536-z |
|
14. Yanga D., Velamakannia A., Bozoklu G. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon. 2009. 47. P. 145-152; doi: 10.1016/j.carbon.2008.09.045. https://doi.org/10.1016/j.carbon.2008.09.045 |
|
15. Fu C., Zhao G., Zhang H., Li S. Evaluation and characterization of reduced graphene oxide nano-sheets as anode materials for lithium-ion batteries. Int. J. Electrochem. Sci. 2013. 8, N5. P. 6269-6280. |
|
16. Gilje S., Han S., Wang M., Wang K.L., and Kaner R.B. A chemical route to graphene for device applications. Nano Lett. 2007. 7, No 11. P. 3394-33988. DOI: 10.1021/nl0717715. https://doi.org/10.1021/nl0717715 |
|
17. Claramunt S., Varea A., Lopez-Diaz D. et al. The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. J. Phys. Chem. 2015. 119, No 18. P. 10123в€’10129. DOI: 10.1021/acs.jpcc.5b01590. https://doi.org/10.1021/acs.jpcc.5b01590 |
|
18. Naik G., Krishnaswamy S. Room-temperature humidity sensing using graphene oxide thin films. Graphene. 2016. 5. P. 1в€’13. DOI: 10.4236/graphene.2016.51001. https://doi.org/10.4236/graphene.2016.51001 |
|
19. Gautam M., Jayatissa A.H. Detection of organic vapors by graphene films functionalized with metallic nanoparticles. J. Appl. Phys. 2012. 112. P. 114326. https://doi.org/10.1063/1.4768724. https://doi.org/10.1063/1.4768724 |
|
20. Gautam M., Jayatissa A.H. Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid-State Electron. 2012. 78. P. 159 -165. http://dx.doi.org/10.1016/j.sse.2012.05.059. https://doi.org/10.1016/j.sse.2012.05.059 |