Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (1) P. 098-103 (2019).
DOI: https://doi.org/10.15407/spqeo22.01.098


References

1. Avouris P., Xia F. Graphene applications in electro-nics and photonics. MRS Bullet. 2012. 37. P. 1225-1234. https://doi.org/10.1557/mrs.2012.206.
https://doi.org/10.1557/mrs.2012.206
2. Choi W., Lahiri I., Seelaboyina R., Kang Y.S. Synthesis of graphene and its applications: A review. Critical Reviews in Solid State and Materials Sciences. 35 (2010) 52-71. https://doi.org/10.1080/10408430903505036.
https://doi.org/10.1080/10408430903505036
3. Kulkarni G.S., Reddy K., Zhong Z., Fan X. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat Commun. 2014. 4376. P. 1-7; doi: 10.1038/ncomms5376.
https://doi.org/10.1038/ncomms5376
4. Karim M.R., Hatakeyama K., Matsui T. et al. Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 2013. 135. P. 8097-8100; doi: 10.1021/ja401060q.
https://doi.org/10.1021/ja401060q
5. Xinglin Yu, Xiangdong Chen, Xing Ding. High-sensitivity and low-hysteresis humidity sensor based on hydrothermally reduced graphene oxide/nanodiamond. Sensors and Actuators, B: Chem. 2019. 283. P. 761-768; doi: 10.1016/j.snb.2018.12.057.
https://doi.org/10.1016/j.snb.2018.12.057
6. Prezioso S., Perrozzi F., Giancaterini L., Cantalini C., Treossi E., Palermo V., Nardone M., Santucci S., Ottaviano L. Graphene oxide as practical solution to high sensitivity gas sensing. J. Phys. Chem. C. 2013. 117, No 20. P. 10683-10690; doi: 10.1021/jp3085759.
https://doi.org/10.1021/jp3085759
7. Hwang S., Lim J., Park H.G. et al. Chemical vapor sensing properties of graphene based on geometrical evaluation. Current Appl. Phys. 2012. 12. P. 1017-1022. DOI: 10.1016/j.cap.2011.12.021.
https://doi.org/10.1016/j.cap.2011.12.021
8. Pandey P.A., Wilson N.R., Covington J.A. Pd-doped reduced graphene oxide sensing films for H2 detection. Sensors and Actuators, B: Chem. 2013. 183. P. 478-487. http://dx.doi.org/10.1016/j.snb.2013.03.089.
https://doi.org/10.1016/j.snb.2013.03.089
9. Wu Z.-S., Ren W., Gao L., Liu B., Jiang C., Cheng H.-M. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon. 2009. 47. P. 493-499. DOI: 10.1016/j.carbon.2008.10.031.
https://doi.org/10.1016/j.carbon.2008.10.031
10. Stankovich S., Dikin D.A., Piner R.D. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007. 45. P. 1558-1565. DOI: 10.1016/j.carbon.2007.02.034.
https://doi.org/10.1016/j.carbon.2007.02.034
11. Jung I., Dikin D.A., Piner R.D., Ruoff R.S., Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures. Nano Lett., 2008. 8, No. 12. P. 4283-4287. DOI:10.1021/nl8019938.
https://doi.org/10.1021/nl8019938
12. Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958. 80, No 6. P. 1339-1339. DOI: 10.1021/ja01539a017.
https://doi.org/10.1021/ja01539a017
13. Slobodian O.M., Lytvyn P.M., Nikolenko A.S. et al. Low-temperature reduction of graphene oxide: electrical conductance and scanning Kelvin probe force microscopy. Nanoscale Res. Lett. 2018. 13, No 1. P. 139; doi: 10.1186/s11671-018-2536-z.
https://doi.org/10.1186/s11671-018-2536-z
14. Yanga D., Velamakannia A., Bozoklu G. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon. 2009. 47. P. 145-152; doi: 10.1016/j.carbon.2008.09.045.
https://doi.org/10.1016/j.carbon.2008.09.045
15. Fu C., Zhao G., Zhang H., Li S. Evaluation and characterization of reduced graphene oxide nano-sheets as anode materials for lithium-ion batteries. Int. J. Electrochem. Sci. 2013. 8, N5. P. 6269-6280.
16. Gilje S., Han S., Wang M., Wang K.L., and Kaner R.B. A chemical route to graphene for device applications. Nano Lett. 2007. 7, No 11. P. 3394-33988. DOI: 10.1021/nl0717715.
https://doi.org/10.1021/nl0717715
17. Claramunt S., Varea A., Lopez-Diaz D. et al. The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. J. Phys. Chem. 2015. 119, No 18. P. 10123−10129. DOI: 10.1021/acs.jpcc.5b01590.
https://doi.org/10.1021/acs.jpcc.5b01590
18. Naik G., Krishnaswamy S. Room-temperature humidity sensing using graphene oxide thin films. Graphene. 2016. 5. P. 1−13. DOI: 10.4236/graphene.2016.51001.
https://doi.org/10.4236/graphene.2016.51001
19. Gautam M., Jayatissa A.H. Detection of organic vapors by graphene films functionalized with metallic nanoparticles. J. Appl. Phys. 2012. 112. P. 114326. https://doi.org/10.1063/1.4768724.
https://doi.org/10.1063/1.4768724
20. Gautam M., Jayatissa A.H. Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid-State Electron. 2012. 78. P. 159 -165. http://dx.doi.org/10.1016/j.sse.2012.05.059.
https://doi.org/10.1016/j.sse.2012.05.059