Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (1) P. 119-129 (2019).
DOI: https://doi.org/10.15407/spqeo22.01.119


References

1. Jena D., Heikman S., Green D., Buttari D., Coffie R., Xing H., Keller S., DenBaars S., Speck J.S., Mishra U.K. and Smorchkova I. Realization of wide electron slabs by polarization bulk doping in graded III-V nitride semiconductor alloys. Appl. Phys. Lett. 2002. 81, No. 23. P. 4395-4397. doi: 10.1063/1.1526161.
https://doi.org/10.1063/1.1526161
2. Simon J., Protasenko V., Lian C., Xing H. and Jena D. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science. 2010. 327, P. 60-64. doi: 10.1126/science.1183226.
https://doi.org/10.1126/science.1183226
3. Li S., Ware M., Wu J., Minor P., Wang Z., Wu Z., Jiang Y. and Salamo G. J. Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN. Appl. Phys. Lett. 2012. 101, No. 12. P. 122103. doi: 10.1063/1.4753993.
https://doi.org/10.1063/1.4753993
4. Tadjer M.J., Feigelson B.N., Greenlee J.D., Freitas J.A., Anderson T.J., Hite J.K., Ruppalt L., Eddy C.R., Hobart K.D. and Kub F.J. Selective p-type doping of GaN:Si by Mg ion implantation and multicycle rapid thermal annealing. ECS J. Solid State Sci. Technol. 2016. 5, No. 2. P. 124-127. doi: 10.1149/2.0371602jss.
https://doi.org/10.1149/2.0371602jss
5. Liu C., Mensching B., Volz K. and Rauschenbach B. Lattice expansion of Ca and Ar ion implanted GaN. Appl. Phys. Lett. 1997. 71, No. 16. P. 2313-2315. doi: 10.1063/1.120059.
https://doi.org/10.1063/1.120059
6. Liu C., Mensching B., Zeitler M., Volz K. and Rauschenbach B. Ion implantation in GaN at liquid-nitrogen temperature: Structural characteristics and amorphization. Phys. Rev. B. 1998. 57, No. 4. P. 2530-2535. doi: 10.1103/PhysRevB.57.2530.
https://doi.org/10.1103/PhysRevB.57.2530
7. Pagowska K., Ratajczak R., Stonert A., Nowicki L. and Turos A. Compositional dependence of damage buildup in Ar-ion bombarded AlGaN. Vacuum. 2009. 83. P. S145-S147. doi: 10.1016/j.vacuum.2009.01.048.
https://doi.org/10.1016/j.vacuum.2009.01.048
8. Fialho M., Magalhães S., Chauvat M. P., Ruterana P., Lorenz K. and Alves E. Impact of implantation geometry and fluence on structural properties of AlxGa1-xN implanted with thulium. J. Appl. Phys. 2016. 120, No. 16. P. 165703. doi: 10.1063/1.4966120.
https://doi.org/10.1063/1.4966120
9. Faye D.N., Alves E., Felizardo M., Wendler E., Brunner F., Lorenz K., Magalhães S. and Weyers M. Mechanisms of implantation damage formation in AlxGa1- xN compounds. J. Phys. Chem. C. 2016. 120, No. 13. P. 7277-7283. doi: 10.1021/acs.jpcc.6b00133.
https://doi.org/10.1021/acs.jpcc.6b00133
10. Kuchuk A.V., Lytvyn P.M., Li C., Stanchu H.V., Mazur Y.I., Ware M.E., Benamara M., Ratajczak R., Dorogan V., Kladko V.P., Belyaev A.E. and Salamo G.G. Nanoscale electrostructural characterization of compositionally graded AlxGa1-xN heterostructures on GaN/sapphire (0001) substrate. ACS Appl. Mater. Interfaces. 2015. 7, No. 41. P. 23320-23327. doi: 10.1021/acsami.5b07924.
https://doi.org/10.1021/acsami.5b07924
11. Punegov V.I. X-Ray diffraction from multilayer structures with statistically distributed microdefects. phys. status solidi (a). 1993. 136, No. 1. P. 9-19. doi: 10.1002/pssa.2211360102.
https://doi.org/10.1002/pssa.2211360102
12. Punegov V.I. Dynamic X-ray diffraction in layered-inhomoneous systems. Tech. Phys. Lett. 1994. 20, No. 1. P. 58-59.
13. Punegov V.I., Petrakov A.P. and Tikhonov N.A. X-Ray diffraction on laser disturbed near-surface crystal layers. phys. status solidi (a). 1990. 122, No. 2. P. 449-458. doi: 10.1002/pssa.2211220202.
https://doi.org/10.1002/pssa.2211220202
14. Pavlov K.M. and Punegov V.I. Der einfluß kugelsymmetrischer kristalldefekte auf die winkelverteilung gebeugter röntgenstrahlung. phys. status solidi (a). Basic Res. 1997. 199, No. 1. P. 5-14. doi: 10.1002/1521-3951(199701)199:1<5::AID-PSSB5>3.0.CO;2-V.
https://doi.org/10.1002/1521-3951(199701)199:1<5::AID-PSSB5>3.0.CO;2-V
15. Punegov V.I. and Pavlov K.M. Models of spherically symmetric microdefects in the statistical dynamical theory of diffraction: II. Correlation length. Crystallogr. Reports. 1996. 41, No. 4. P. 585-591.
16. Punegov V.I. and Pavlov K.M. Models of Sphe-rically Symmetric Microdefects in the Statistical Dynamical Theory of Diffraction: I. Correlation Function. Crystallogr. Reports. 1996. 41, No. 4. P. 575-584.
17. Boguslawski P., Briggs E.L. and Bernholc J. Native defects in gallium nitride. Phys. Rev. B. 1995. 51, No. 23. P. 17255-17258. doi: 10.1103/PhysRevB.51.17255.
https://doi.org/10.1103/PhysRevB.51.17255
18. Fehrer M., Einfeldt S., Birkle U., Gollnik T. and Hommel D. Impact of defects on the carrier transport in GaN. J. Cryst. Growth. 1998. 189-190. P. 763-767. doi: 10.1016/S0022-0248(98)00284-X.
https://doi.org/10.1016/S0022-0248(98)00284-X
19. Liubchenko O.I., Sabov T.M., Kladko V.P., Melnik V.P., Yukhymchuk V.O., Romaniuk B.M., Kolomys O., Hreshchuk O., Dubikovskyi O.V., Maksymenko Z.V., Gudymenko O.Yo. and Belyaev A.E. Modification of elastic deformations and analysis of crystalline changes in Ar+-implanted AlN/GaN superlattices. Appl. Nanosci. 2019. 9. doi: 10.1007/s13204-019-01000-w.
https://doi.org/10.1007/s13204-019-01000-w
20. Ziegler J.F., Ziegler M.D. and Biersack J.P. SRIM - The stopping and range of ions in matter (2010). Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 2010. 268, No. 11-12. P. 1818-1823. doi: 10.1016/j.nimb.2010.02.091.
https://doi.org/10.1016/j.nimb.2010.02.091
21. Kato N. Statistical dynamical theory of crystal diffraction. I. General formulation. Acta Crystallogr. Sect. A. 1980. 36, No. 5. P. 763-769. doi: 10.1107/S0567739480001544.
https://doi.org/10.1107/S0567739480001544
22. Pipeleers B., Hogg S. M. and Vantomme A. Defect accumulation during channeled erbium implantation into GaN. J. Appl. Phys. 2005. 98, No. 12. P. 123504. doi: 10.1063/1.2143120.
https://doi.org/10.1063/1.2143120
23. Fialho M., Rodrigues J., Magalhães S., Correia M. R., Monteiro T., Lorenz K. and Alves E. Effect of AlN content on the lattice site location of terbium ions in AlxGa1−xN compounds. Semicond. Sci. Technol. 2016. 31, No. 3. P. 035026. doi: 10.1088/0268-1242/31/3/035026.
https://doi.org/10.1088/0268-1242/31/3/035026
24. Magalhães S., Fialho M., Peres M., Lorenz K. and Alves E. Quantitative x-ray diffraction analysis of bimodal damage distributions in Tm implanted Al0.15Ga0.85N. J. Phys. D. Appl. Phys. 2016. 49, No. 13. P. 135308. doi: 10.1088/0022-3727/49/13/135308.
https://doi.org/10.1088/0022-3727/49/13/135308
25. Klappe J.G.E. and Fewster P.F. Fitting of rocking curves from ion-implanted semiconductors. J. Appl. Crystallogr. 1994. 27. P. 103-110. doi: 10.1107/S0021889893007484.
https://doi.org/10.1107/S0021889893007484
26. Arulkumaran S., Kennedy J., Bhat T.N., Ng G.I., Ranjan K., Tripathy S. and Murmu P.P. Thermally stable device isolation by inert gas heavy ion implantation in AlGaN/GaN HEMTs on Si. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2016. 34, No. 4. P. 042203. doi: 10.1116/1.4955152.
https://doi.org/10.1116/1.4955152
27. Wormington M., Panaccione C., Matney K.M. and Bowen D.K. Characterization of structures from X-ray scattering data using genetic algorithms. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1999. 357, N 1761. P. 2827-2848. doi: 10.1098/rsta.1999.0469.
https://doi.org/10.1098/rsta.1999.0469
28. Storn R. and Price K. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997. 11, No. 4. P. 341-359. doi: 10.1023/A:1008202821328.
https://doi.org/10.1023/A:1008202821328
29. Liubchenko O.I., Kladko V.P., Sabov T.M. and Dubikovskyi O.V. X-ray analysis for micro-structure of AlN/GaN multiple quantum well systems. J. Mater. Sci. Mater. Electron. 2019. 30, No 1. P. 499-507. doi: 10.1007/s10854-018-0315-3.
https://doi.org/10.1007/s10854-018-0315-3
30. Liubchenko O.I. and Kladko V.P. Simulation of X-ray diffraction spectra for AlN/GaN multiple quantum well structures on AlN(0001) with interface roughness and variation of vertical layers thickness. Metallofiz. i Noveishie Tekhnologii. 2018. 40, No. 6. P. 759-776. doi: 10.15407/mfint.40.06.0759.
https://doi.org/10.15407/mfint.40.06.0759
31. Boulle A. and Debelle A. Strain-profile determination in ion-implanted single crystals using generalized simulated annealing. J. Appl. Crystallogr. 2010. 43, No. 5. P. 1046-1052. doi: 10.1107/S0021889810030281.
https://doi.org/10.1107/S0021889810030281
32. Zolotoyabko E. Extended kinematic approach to the simulation of high-resolution X-ray diffraction spectra. Application to structures with buried amorphous layers. J. Appl. Crystallogr. 1998. 31, No. 2. P. 241-251. doi:10.1107/S0021889897009096.
https://doi.org/10.1107/S0021889897009096
33. Liubchenko O., Kladko V. and Gudymenko O. Yo. Modeling of X-ray rocking curves for layers after two-stage ion-implantation. Semicond. Physics, Quantum Electron. Optoelectron. 2017. 20, No. 3. P. 355-361. doi: 10.15407/spqeo20.03.355.
https://doi.org/10.15407/spqeo20.03.355
34. Klad'ko V.P., Datsenko L.I., Bak-Misiuk J., Olikhovskii S.I., Machulin V.F., Prokopenko I.V., Molodkin V.B. and Maksimenko Z.V. Calculation of two-dimensional maps of diffuse scattering by a real crystal with microdefects and comparison of results obtained from three-crystal diffractometry. J. Phys. D. Appl. Phys. 2001. 34, No. 10A. P. A87-A92. doi: 10.1088/0022-3727/34/10A/318.
https://doi.org/10.1088/0022-3727/34/10A/318
35. Shcherbachev K.D., Bublik V.T., Mordkovich V.N. and Pazhin D.M. Specific features of formation of radiation defects in the silicon layer in "silicon-on-insulator" structures. Semiconductors. 2011. 45, No. 6. P. 738-742. doi: 10.1134/S1063782611060224.
https://doi.org/10.1134/S1063782611060224
36. Moram M.A., Sadler T.C., Häberlen M., Kappers M.J. and Humphreys C.J. Dislocation movement in GaN films. Appl. Phys. Lett. 2010. 97, No. 26. P. 261907. doi: 10.1063/1.3532965.
https://doi.org/10.1063/1.3532965
37. Iwata H., Kobayashi H., Kamiya T., Kamei R., Saka H., Sawaki N., Irie M., Honda Y. and Amano H. Annealing effect on threading dislocations in a GaN grown on Si substrate. J. Cryst. Growth. 2017. 468. P. 835-838. doi: 10.1016/j.jcrysgro.2017.01.001
https://doi.org/10.1016/j.jcrysgro.2017.01.001
38. Kyutt R.T. Defect structure of epitaxial layers of III nitrides as determined by analyzing the shape of X-ray diffraction peaks. Tech. Phys. 2017. 62, No. 4. P. 598-603. doi: 10.1134/s1063784217040144
https://doi.org/10.1134/S1063784217040144
39. Kaganer V.M., Brandt O., Trampert A. and Ploog K.H. X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films. Phys. Rev. B: Condens. Matter Mater. Phys. 2005. 72, No. 4. P. 045423. doi: 10.1103/PhysRevB.72.045423.
https://doi.org/10.1103/PhysRevB.72.045423
40. Barchuk M., Holý V., Miljević B., Krause B., Baumbach T., Hertkorn J. and Scholz F. X-ray diffuse scattering from threading dislocations in epitaxial GaN layers. J. Appl. Phys. 2010. 108, No. 4. P. 043521. doi: 10.1063/1.3460803.
https://doi.org/10.1063/1.3460803