Semiconductor Physics, Quantum Electronics & Optoelectronics, 24 (1), P. 5-15 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.005


References

1. Krivoglaz M.A. Diffraction of X-Rays and Thermal Neutrons in Imperfect Crystals. Springer, 1992.

2. Schmidbauer M. X-ray Diffuse Scattering from Self- Organized Mesoscopic Semiconductor Structures. Berlin, Heidelberg: Springer, 2010.
https://doi.org/10.1002/chin.200212280

3. Benediktovich A., Feranchuk I., and Ulyanenkov A. Theoretical Concepts of X-Ray Nanoscale Analysis: Theory and Applications. Berlin: Springer Science & Business Media, 2013.
https://doi.org/10.1007/978-3-642-38177-5

4. Schmidbauer M., Schafer P., Besedin S. et al. A novel multi-detection technique for three-dimensio- nal reciprocal-space mapping in grazing-incidence X-ray diffraction. J. Synchrotron Rad. 2008. 15. P. 549-557.
https://doi.org/10.1107/S0909049508023856

5. Cornelius T.W., Davydok A., Jacques V.L.R. et al. In situ three-dimensional reciprocal-space mapping during mechanical deformation. J. Synchrotron Rad. 2012. 19. P. 688-694.
https://doi.org/10.1107/S0909049512023758

6. Lazarev S., Barchuk M., Bauer S. et al. Study of threading dislocation density reduction in AlGaN epilayers by Monte Carlo simulation of high- resolution reciprocal-space maps of a two-layer system. J. Appl. Cryst. 2013. 46. P. 120-127.
https://doi.org/10.1107/S0021889812043051

7. Shabalin A. G., Meijer J.-M., Dronyak R. et al. Revealing three-dimensional structure of an indivi- dual colloidal crystal grain by coherent X-Ray diffrac- tive imaging. Phys. Rev. Lett. 2016. 117. P. 138002.
https://doi.org/10.1103/PhysRevLett.117.138002

8. Suturin S.M., Fedorov V.V., Korovin A.M. et al. Epitaxial Ni nanoparticles on CaF 2 (001), (110) and (111) surfaces studied by three-dimensional RHEED, GIXD and GISAXS reciprocal-space mapping techniques. J. Appl. Cryst. 2017. 50. P. 830-839.
https://doi.org/10.1107/S160057671700512X

9. Chukhovskii F.N., Konarev P.V., and Volkov V.V. Towards a solution of the inverse X-ray diffraction tomography challenge: theory and iterative algorithm for recovering the 3D displacement field function of Coulomb-type point defects in a crystal. Acta Crystallogr. A. 2020. 76. P. 163-167.
https://doi.org/10.1107/S2053273320000145

10. Lizunov V.V., Molodkin V.B., Lizunova S.V. et al. The phenomenon of intensification (by several orders of magnitude) defects' manifestation in the multiple-scattering pattern and its dispersive nature. Metallofiz. Noveishie Tekhnol. 2014. 36, No 7. P. 857 (in Russian).

11. Skapa L.N., Lizunov V.V., Molodkin V.B. et al. Dispersion effects of interconnection of the scattering pattern dependences on different diffraction conditions and huge intensification of these dependences and their structure sensitivity and informativeness. Metallofiz. Noveishie Tekhnol. 2015. 37, No 11. P. 1567 (in Russian).

12. Lizunov V.V., Zabolotnyy I.M., Vasylyk Ya.V. et al. Integrated diffractometry: Achieved progress and new performance capabilities. Usp. Fiz. Met. 2019. 20, No 1. P. 75.
https://doi.org/10.15407/ufm.20.01.075

13. Stevenson A.W. X-ray integrated intensities from semiconductor substrates and epitaxic layers - a comparison of kinematical and dynamical theories with experiment. Acta Crystallogr. A. 1993. 49. P. 174-183.
https://doi.org/10.1107/S0108767392007438

14. Baryakhtar V.G., Kovalchuk M.V., Litvinov Yu.M. et al. Total integrated intensity of Bragg-diffracted synchrotron radiation for crystals with defects. Nucl. Instr. Meth. Phys. Res. A. 1991. 308. P. 291.
https://doi.org/10.1016/0168-9002(91)90650-F

15. Nemoshkalenko V.V., Molodkin V.B., Kislovski E.N. et al. Metallofiz. Noveishie Tekhnol. 1994. 16. P. 48 (in Russian). 16. Baryakhtar V.G., Nemoshkalenko V.V., Molodkin V.B. et al. Metallofiz. Noveishie Tekhnol. 1994. 16. P. 21 (in Russian).

17. Lizunov V. V., Molodkin V. B., Olikhovskii S. I. et al. New possibilities of integral dynamic diffrac- tometry of crystal imperfections. Metallofiz. Nov. Tekhnol. 2015. 37. P. 265-279 (in Russian).

18. Kato N. Statistical dynamical theory of crystal diffraction. I. General formulation. Acta Crystallogr. A. 1980. 36. P. 763-769.
https://doi.org/10.1107/S0567739480001544

19. Al Haddad M., and Becker P.J. On the statistical dynamical theory of diffraction: application to silicon. Acta Crystallogr. A. 1988. 44. P. 262-270.
https://doi.org/10.1107/S0108767387011681

20. Becker P. and Al Haddad M. Diffraction by a randomly distorted crystal. II. General theory. Acta Crystallogr. A. 1992. 48. P. 121-134.
https://doi.org/10.1107/S0108767391009376

21. Guigay J.P. and Chukhovskii F.N. Reformulation of the dynamical theory of coherent wave propagation by randomly distorted crystals. Acta Crystallogr. A. 1992. 48. P. 819-826.
https://doi.org/10.1107/S0108767392003830

22. Chukhovskii F.N. and Guigay J.P. Towards a rigorous treatment of the wave-field propagation according to the statistical theory of dynamical diffraction. J. Phys. D: Appl. Phys. A. 1993. 26. P. 53.
https://doi.org/10.1088/0022-3727/26/4A/012

23. Dederichs P.H. Diffuse scattering from defect clus- ters near Bragg reflections. Phys. Rev. B. 1971. 4. P. 1041.
https://doi.org/10.1103/PhysRevB.4.1041

24. Thomas J.E., Baldwin T.O., and Dederichs P.H. Diffuse X-ray scattering in fast-neutron-irradiated copper crystals. Phys. Rev. B. 1971. 3. P. 1167.
https://doi.org/10.1103/PhysRevB.3.1167

25. Molodkin V.B., Olikhovskii S.I., Osinovskii M.E. et al. The integrated intensities of the Laue- diffracted X-rays for monocrystals containing macroscopically homogeneously distributed defects. phys. status solidi (a). 1985. 87. P. 597.
https://doi.org/10.1002/pssa.2210870223

26. Molodkin V.B., Dmitriev S.V., Pervak E.V. et al. The effect of asymmetry of the azimuthal dependence of the integral intensity of Bragg diffraction in single crystals with defects. Metallofiz. Noveishie Tekhnol. 2006. 28, No 8. P. 1077-1084 (in Russian).

27. Molodkin V.B., Nizkova A.I., Vasylyk Ya.V. et al. Principles of X-ray diffractometry of single-crystal non-uniformly distributed microdefects compared with extinction length. Metallofiz. Noveishie Tekhnol. 2012. 34, No 5. P. 705-711 (in Russian).

28. Molodkin V.B., Nizkova A.I., Vasylyk Ya.V. et al. Principles of X-ray diffractometry of perturbed surface layers and non-uniformly distributed microdefects commensurate with extinction length in single crystals. Metallofiz. Noveishie Tekhnol. 2012. 34, No 6. P. 787-798 (in Russian).

29. Molodkin V.B., Nizkova A.I., Vasylyk Ya.V. et al. New possibilities for X-ray diffractometry of microdefects' structure evolution in silicon crystals after irradiation with high-energy electrons. Metallofiz. Noveishie Tekhnol. 2012. 34, No 7. P. 989-1002 (in Russian).

30. Talanin I.E. Mechanism of Formation and Properties of Growth of Microdefects in Dislocation-Free Silicon Single Crystals. Thesis of Doctor of Physics and Mathematics Sciences. Chernivtsi National University, 2005 (in Russian).

31. Molodkin V.B., Olikhovskii S.I., Dmitriev S.V. et al. Dynamical effects in the integrated X-ray scattering intensity from imperfect crystals in Bragg diffraction geometry. I. Semi-dynamical model. Acta Crystallogr. A. 2020. 76. P. 45-54.
https://doi.org/10.1107/S2053273319014281