Semiconductor Physics, Quantum Electronics & Optoelectronics, 24 (1), P. 26-33 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.026


References

1. Ohno S., Banik A., Dewald G.F. et al. Materials design of ionic conductors for solid state batteries. Prog. Energy. 2020. 2. P. 022001.
https://doi.org/10.1088/2516-1083/ab73dd

2. Grey C.P., Hall D.S. Prospects for lithium-ion batteries and beyond - a 2030 vision. Nat. Commun. 2020. 11. P. 6279.
https://doi.org/10.1038/s41467-020-19991-4

3. Duan J., Tang X., Dai H. et al. Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energ. Rev. 2020. 3. P. 1-42.
https://doi.org/10.1007/s41918-019-00060-4

4. Dubarry M., Baure G. Perspective on commercial Li-ion battery testing, best practices for simple and effective protocols. Electronics. 2020. 9, No 1. P. 152.
https://doi.org/10.3390/electronics9010152

5. Sun Y.-K. Promising all-solid-state batteries for future electric vehicles. ACS Energy Lett. 2020. 5, No 10. P. 3221-3223.
https://doi.org/10.1021/acsenergylett.0c01977

6. He X., Zhu Y., Mo Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 2017. 8. P. 15893.
https://doi.org/10.1038/ncomms15893

7. Kuhs W.F., Nitsche R., Scheunemann K. The argyrodites - a new family of tetrahedrally close- packed structures. Mat. Res. Bull. 1979. 14, No 2. P. 241-248.
https://doi.org/10.1016/0025-5408(79)90125-9

8. Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: Structure - property relations of high temperature ion conductors. Z. Kristallogr. 2005. 220. P. 281-294.
https://doi.org/10.1524/zkri.220.2.281.59142

9. Zhou L., Assoud A., Zhang Q., Wu X., Nazar L.F. New Family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 2019. 141, No 48, P. 19002-19013.
https://doi.org/10.1021/jacs.9b08357

10. Studenyak I.P., Stefanovich V.O., Kranjcec M. et al. Raman scattering studies of Cu 6 PS 5 Hal (Hal = Cl, Br, I) fast-ion conductors. Solid State Ionics. 1997. 95. P. 221-225.
https://doi.org/10.1016/S0167-2738(96)00477-8

11. Beeken R.B., Garbe J.J., Gillis J.M. et al. Electrical conductivities of the Ag 6 PS 5 X and the Cu 6 PSe 5 X (X = Br, I) argyrodites. J. Phys. Chem. Solids. 2005. 66, No 5. P. 882-886.
https://doi.org/10.1016/j.jpcs.2004.10.010

12. Pogodin A.I., Filep M.J., Malakhovska T.O. et al. The copper argyrodites Cu 7-n PS 6-n Br n : Crystal growth, structures and ionic conductivity. Solid State Ionics. 2019. 341. P. 115023.
https://doi.org/10.1016/j.ssi.2019.115023

13. Hanghofer I., Brinek M., Eisbacher S.L. et al. Substitutional disorder: structure and ion dynamics of the argyrodites Li 6 PS 5 Cl, Li 6 PS 5 Br and Li 6 PS 5 I. Phys. Chem. Chem. Phys. 2019. 21, No 16. P. 8489-8507.
https://doi.org/10.1039/C9CP00664H

14. Orliukas A.F., Kazakevicius E., Kezionis A. et al. Preparation, electric conductivity and dielectrical properties of Cu 6 PS 5 I-based superionic composites. Solid State Ionics. 2009. 180, No 2-3. P. 183-186.
https://doi.org/10.1016/j.ssi.2008.12.005

15. Studenyak I.P., Izai V.Yu., Studenyak V.I. et al. Influence of Cu 6 PS 5 ² superionic nanoparticles on the dielectric properties of 6ÑÂ liquid crystal. Liquid Crystals. 2017. 44, No 5. P. 897-903.
https://doi.org/10.1080/02678292.2016.1254288

16. Salkus T., Kazakevicius E., Banys J. et al. Influence of grain size effect on electrical properties of Cu 6 PS 5 I superionic ceramics. Solid State Ionics. 2014. 262. P. 597-600.
https://doi.org/10.1016/j.ssi.2013.10.040

17. Studenyak I.P., Kranjcec M., Izai V.Yu. et al. Structural and temperature-related disordering studies of Cu 6 PS 5 I amorphous thin films. Thin Solid Films. 2012. 520, No 6. P. 1729-1733.
https://doi.org/10.1016/j.tsf.2011.08.043

18. Studenyak I.P., Kranjcec M. Disordering Effects in Superionic Conductors with Adgyrodite Structure. Uzhhorod: Hoverla, 2007 (in Ukrainian).

19. Studenyak I.P., Buchuk R.Yu, Bendak A.V. et al. Electric conductivity studies of composites based on (Cu 1-x Ag x ) 6 PS 5 I superionic conductors. SPQEO. 2014. 17, No 4. P. 425-428.
https://doi.org/10.15407/spqeo17.04.425

20. McCusker L.B., Von Dreele R.B., Cox D.E., Louer D., Scardi P. Rietveld refinement guidelines. J. Appl. Crystallogr. 1999. 32, No 1. P. 36-50.
https://doi.org/10.1107/S0021889898009856

21. Altomare A., Cuocci C., Giacovazzo C. et al. EXPO2013: a kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 2013. 46, No 4. P. 1231-1235.
https://doi.org/10.1107/S0021889813013113

22. Momma K., Izumi F. VESTA 3 for three- dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011. 44. P. 1272-1276.
https://doi.org/10.1107/S0021889811038970

23. Orazem M.E., Tribollet B. Electrochemical Impedance Spectroscopy. New Jersey: Wiley, 2008.
https://doi.org/10.1002/9780470381588

24. Ivanov-Schitz A.K., Murin I.V. Solid State Ionics. St.-Petersburg: Univ. Press, 2000 (in Russian).

25. Huggins R.A. Simple method to determine electronic and ionic components of the conductivity in mixed conductors a review. Ionics. 2002. 8, No 3. P. 300-313.
https://doi.org/10.1007/BF02376083

26. West A.R. Solid State Chemistry and its Applications. Second Edition. Student Edition. John Wiley & Sons, Ltd, 2014.

27. Studenyak I.P., Pogodin A.I., Studenyak V.I. et al. Structure, electrical conductivity, and Raman spectra of (Cu 1-x Ag x ) 7 GeS 5 I and (Cu 1-x Ag x ) 7 GeSe 5 I mixed crystals. Materials Research Bulletin. 2021. 135. P. 111116.
https://doi.org/10.1016/j.materresbull.2020.111116

28. Studenyak I.P., Pogodin A.I., Studenyak V.I. et al. Electrical properties of copper- and silver- containing superionic (Cu 1?x Ag x ) 7 SiS 5 I mixed crystals with argyrodite structure. Solid State Ionics. 2020. 345. P. 115183.
https://doi.org/10.1016/j.ssi.2019.115183

29. Studenyak I.P., Pogodin A.I., Kokhan O.P. et al. Crystal growth, structural and electrical properties of (Cu 1-õ Ag x ) 7 GeS 5 I superionic solid solutions. Solid State Ionics. 2019. 329. P. 119-123.
https://doi.org/10.1016/j.ssi.2018.11.020