Semiconductor Physics, Quantum Electronics & Optoelectronics, 24 (1), P. 64-70 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.064


References

1. Biswas A. Optical soliton cooling with polynomial law of nonlinear refractive index. J. Opt. 2020. 49. P. 580-583.
https://doi.org/10.1007/s12596-020-00644-0

2. Dubietis A., Tamosauskas G., Suminas R., Jukna V. & Couairon A. Ultrafast supercontinuum generation in bulk condensed media. Lithuanian Journal of Physics. 2017. 57, No 3. P. 113-157.
https://doi.org/10.3952/physics.v57i3.3541

3. Genc G., Ekici M., Biswas A. & Belic M.R. Cubic- quartic optical solitons with Kudryashov's law of refractive index by F-expansion schemes. Results in Physics. 2020. 18. P. 103273.
https://doi.org/10.1016/j.rinp.2020.103273

4. Komanec M., Dousek D., Suslov D. & Zvanovec S. Hollow-core optical fibers. Radioengineering. 2020. 29, No 3. P. 417-430.
https://doi.org/10.13164/re.2020.0417

5. Kudryashov N.A. First integrals and general solution of the traveling wave reduction for Schrodinger equation with anti-cubic nonlinearity. Optik. 2019. 185. P. 665-671.
https://doi.org/10.1016/j.ijleo.2019.03.167

6. Kudryashov N.A. Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik. 2020. 212. P. 164750.
https://doi.org/10.1016/j.ijleo.2020.164750

7. Kudryashov N.A. A generalized model for description of propagation pulses in optical fiber. Optik. 2019. 189. P. 42-52.
https://doi.org/10.1016/j.ijleo.2019.05.069

8. Kudryashov N.A. & Antonova E.V. Solitary waves of equation for propagation pulse with power nonlinearities. Optik. 2020. 217. P. 164881.
https://doi.org/10.1016/j.ijleo.2020.164881

9. Kudryashov N.A. Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik. 2020. 206. P. 163550.
https://doi.org/10.1016/j.ijleo.2019.163550

10. Kudryashov N.A. Optical solitons of the model with arbitrary refractive index. Optik. 2020. 224. P. 165767.
https://doi.org/10.1016/j.ijleo.2020.165767

11. Kudryashov N.A. Highly dispersive optical solitons of equation with various polynomial nonlinearity law. Chaos, Solitons & Fractals. 2020. 140. P. 110202.
https://doi.org/10.1016/j.chaos.2020.110202

12. Kudryashov N.A. Optical solitons of model with integrable equation for wave packet envelope. Chaos, Solitons & Fractals. 2020. 141. P. 110325.
https://doi.org/10.1016/j.chaos.2020.110325

13. Kudryashov N.A. Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity. Chin. J. Phys. 2020. 66. P. 401-405.
https://doi.org/10.1016/j.cjph.2020.06.006

14. Ukai Y., Nishizawa N. & Goto T. Ultrafast all optical switching using pulse trapping by ultrashort soliton pulse in birefringent optical fiber. Electrical Engineering in Japan. 2007. 158, Issue 3, P. 38-44.
https://doi.org/10.1002/eej.20470

15. Yildirim Y., Biswas A., Kara A.H., Ekici M., Zayed E.M.E., Alzahrani A.K. & Belic M.R. Cubic-quartic optical soliton perturbation and conservation laws with Kudryashov's law of refractive index. Phys. Lett. A. 2020. 384, Issue 34, 126884.
https://doi.org/10.1016/j.physleta.2020.126884

16. Yildrim Y., Biswas A., Kara A.H., Ekici M., Khan S., Triki H., Zayed E.M.E., Alzahrani A.K. & Belic M.R. Optical solitons and conservation laws with Kudryashov's law of refractive index having quadrupled-poer law and dual form of generalized nonloical nonlinearity. Submitted.

17. Zabolotskii A.A. Control of dissipative solitons in a waveguide trap. Optoelectronics, Instrumentation and Data Processing. 2015. 51, Issue 2. P. 155- 163.
https://doi.org/10.3103/S8756699015020089

18. Zabolotskii A.A. Influence of response nonlocality of a medium on soliton polarization. Opto- electronics, Instrumentation and Data Processing. 2019. 55, Issue 6. P. 606-611.
https://doi.org/10.3103/S8756699019060116

19. Zayed E.M.E., El-Horbaty M., Alngar M.E.M. Cubic-quartic optical soliton perturbation having four laws non-linearity with a prolific integration algorithm. Optik. 2020. 220. P. 165121.
https://doi.org/10.1016/j.ijleo.2020.165121