Semiconductor Physics, Quantum Electronics & Optoelectronics, 24 (1), P. 83-89 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.083


References

1. Neamen D.A. An Introduction to Semiconductor Devices. McGraw-Hill, 2006.

2. Sze S.M. and Ng K.K. Physics of Semiconductor Devices. John Wiley & Sons, Inc., 2007.
https://doi.org/10.1002/0470068329

3. Lee G.W., Shim J.I., and Shin D.S. On the ideality factor of the radiative recombination current in semiconductor light-emitting diodes. Appl. Phys. Lett. 2016. 109, No 3. P. 031104.
https://doi.org/10.1063/1.4959081

4. Malyutenko V.K., Bolgov S.S., and Podoltsev A.D. Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes. Appl. Phys. Lett. 2010. 97, No 25. P. 251110.
https://doi.org/10.1063/1.3529470

5. Shah J.M., Li Y.L., Gessmann T., and Schubert E.F. Experimental analysis and theoretical model for anomalously high ideality factors (n >> 2.0) in AlGaN/GaN p-n junction diodes. J. Appl. Phys. 2003. 94, No 4. P. 2627-2630.
https://doi.org/10.1063/1.1593218

6. Di Zhu, Jiuru Xu, Noemaun A.N. et al. The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 2009. 94, No 8. P. 081113-081113-3.
https://doi.org/10.1063/1.3089687

7. Casey H.C., Muth J., Krishnankutty S., and Zavada J.M. Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light-emitting diodes. Appl. Phys. Lett. 1996. 68, No 20. P. 2867-2869.
https://doi.org/10.1063/1.116351

8. Perlin P., Osinski M., Eliseev P.G. et al. Low- temperature study of current and electro- luminescence in InGaN/AlGaN/GaN double- heterostructure blue light-emitting diodes. Appl. Phys. Lett. 1996. 69, No 12. P. 1680-1682.
https://doi.org/10.1063/1.117026

9. Cao X.A., Stokes E.B., Sandvik P.M. et al. Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes. IEEE Electron Device Lett. 2002. 23, No 9. P. 535-537.
https://doi.org/10.1109/LED.2002.802601

10. Lin Y.J. Origins of the temperature dependence of the series resistance, ideality factor and barrier height based on the thermionic emission model for n-type GaN Schottky diodes. Thin Solid Films. 2010. 519, No 2. P. 829-832.
https://doi.org/10.1016/j.tsf.2010.08.103

11. Lin J.C., Su Y.K., Chang S.J. et al. High respon- sivity of GaN p-i-n photodiode by using low-tempe- rature interlayer. Appl. Phys. Lett. 2007. 91, No 17. P. 173502.
https://doi.org/10.1063/1.2800813

12. Hu W.D., Chen X.S., Yin F., Zhang J.B., Lu W. Two-dimensional transient simulations of drain lag and current collapse in GaN-based high-electron- mobility transistors. J. Appl. Phys. 2009. 105, No 8. P. 084502.
https://doi.org/10.1063/1.3106603

13. Kensuke Takahashi, Jin-Ping Ao, Yusuke Ikawa et al. GaN Schottky diodes for microwave power rectification. Jpn. J. Appl. Phys. 2009. 48, No 4. P. 04C095.
https://doi.org/10.1143/JJAP.48.04C095

14. Kim B.J., Ryu Y.R., Lee T.S., and White H.W. Output power enhancement of GaN light emitting diodes with p-type ZnO hole injection layer. Appl. Phys. Lett. 2009. 94, No 10. P. 103506.
https://doi.org/10.1063/1.3097243

15. Kim T.K., Kim S.H., Yang S.S. et al. GaN-based light-emitting diode with textured indium tin oxide transparent layer coated with Al 2 O 3 powder. Appl. Phys. Lett. 2009. 94, No 16. P. 161107.
https://doi.org/10.1063/1.3120222

16. Miyajima T., Watanabe H., Ikeda M., and Yokoyama H. Picosecond optical pulse generation from self-pulsating bisectional GaN-based blue- violet laser diodes. Appl. Phys. Lett. 2009. 94, No 16. P. 161103.
https://doi.org/10.1063/1.3106055

17. Huang L., Yeh S., Lee C., Tang H., Bardwell J., and Webb J.B. AlGaN/GaN metal-oxide- semiconductor high-electron mobility transistors using oxide insulator grown by photo- electrochemical oxidation method. IEEE Electron. Device Lett. 2008. 29, No 4. P. 284-286.
https://doi.org/10.1109/LED.2008.917326

18. Piprek J. Nitride Semiconductor Devices: Principles and Simulation. Wiley, 2007.
https://doi.org/10.1002/9783527610723

19. Pearton S.J., Zolper J.C., Shul R.J., and Ren F. GaN: Processing, defects, and devices. J. Appl. Phys. 1999. 86, No 1. P. 1-78.
https://doi.org/10.1063/1.371145

20. Lester S.D., Ponce F.A., Craford M.G., and Steigerwald D.A. High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl. Phys. Lett. 1995. 66, No 10. P. 1249-1251.
https://doi.org/10.1063/1.113252

21. Chang S.J., Lin Y.C., Su Y. et al. Nitride-based LEDs fabricated on patterned sapphire substrates. Solid. State. Electron. 2003. 47, No 9. P. 1539-1542.
https://doi.org/10.1016/S0038-1101(03)00073-X

22. Wen T.C., Chang S.J., Su Y.K. et al. InGaN/GaN multiple quantum well green light-emitting diodes prepared by temperature ramping. J. Electron. Mater. 2003. 32, No 5. P. 419-422.
https://doi.org/10.1007/s11664-003-0170-7

23. Reynolds C.L. and Patel A. Tunneling entity in different injection regimes of InGaN light emitting diodes. J. Appl. Phys. 2008. 103, No 8. P. 086102.
https://doi.org/10.1063/1.2906326

24. Mingsheng Xu, Qi Mu, Longfei Xiao et al. Temperature dependent current-voltage curves study of GaN-based blue light-emitting diode. Mater. Exp. 2016. 6, No 2. P. 205-209.
https://doi.org/10.1166/mex.2016.1294

25. Sang-Heon Han, Dong-Yul Lee, Hyun-Wook Shim et al. Improvement of efficiency and electrical properties using intentionally formed V-shaped pits in InGaN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 2013. 102, No 25.
https://doi.org/10.1063/1.4812810

26. Dumin D.J. and Pearson G.L. Properties of gallium arsenide diodes between 4.2 and 300 K. J. Appl. Phys. 1965. 36, No 11. P. 3418-3426.
https://doi.org/10.1063/1.1703009

27. Cao X.A., Teetsov J.M., D'Evelyn M.P., Merfeld D.W., and Van C.H. Electrical characteristics of InGaN/GaN light-emitting diodes grown on GaN and sapphire substrates. Appl. Phys. Lett. 2004. 85, No 1. P. 7-9.
https://doi.org/10.1063/1.1767280

28. Cao X.A., Teetsov J.A., Shahedipour-Sandvik F., and Arthur S.D. Microstructural origin of leakage current in GaN/InGaN light-emitting diodes. J. Cryst. Growth. 2004. 264, No 1-3. P. 172-177.
https://doi.org/10.1016/j.jcrysgro.2004.01.031

29. Levinshtein M.E., Rumyantsev S.L., and Shur M.S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. Wiley, 2001.