Semiconductor Physics, Quantum Electronics & Optoelectronics, 24 (1), P. 83-89 (2021).


1. Neamen D.A. An Introduction to Semiconductor Devices. McGraw-Hill, 2006.

2. Sze S.M. and Ng K.K. Physics of Semiconductor Devices. John Wiley & Sons, Inc., 2007.

3. Lee G.W., Shim J.I., and Shin D.S. On the ideality factor of the radiative recombination current in semiconductor light-emitting diodes. Appl. Phys. Lett. 2016. 109, No 3. P. 031104.

4. Malyutenko V.K., Bolgov S.S., and Podoltsev A.D. Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes. Appl. Phys. Lett. 2010. 97, No 25. P. 251110.

5. Shah J.M., Li Y.L., Gessmann T., and Schubert E.F. Experimental analysis and theoretical model for anomalously high ideality factors (n >> 2.0) in AlGaN/GaN p-n junction diodes. J. Appl. Phys. 2003. 94, No 4. P. 2627-2630.

6. Di Zhu, Jiuru Xu, Noemaun A.N. et al. The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 2009. 94, No 8. P. 081113-081113-3.

7. Casey H.C., Muth J., Krishnankutty S., and Zavada J.M. Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light-emitting diodes. Appl. Phys. Lett. 1996. 68, No 20. P. 2867-2869.

8. Perlin P., Osinski M., Eliseev P.G. et al. Low- temperature study of current and electro- luminescence in InGaN/AlGaN/GaN double- heterostructure blue light-emitting diodes. Appl. Phys. Lett. 1996. 69, No 12. P. 1680-1682.

9. Cao X.A., Stokes E.B., Sandvik P.M. et al. Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes. IEEE Electron Device Lett. 2002. 23, No 9. P. 535-537.

10. Lin Y.J. Origins of the temperature dependence of the series resistance, ideality factor and barrier height based on the thermionic emission model for n-type GaN Schottky diodes. Thin Solid Films. 2010. 519, No 2. P. 829-832.

11. Lin J.C., Su Y.K., Chang S.J. et al. High respon- sivity of GaN p-i-n photodiode by using low-tempe- rature interlayer. Appl. Phys. Lett. 2007. 91, No 17. P. 173502.

12. Hu W.D., Chen X.S., Yin F., Zhang J.B., Lu W. Two-dimensional transient simulations of drain lag and current collapse in GaN-based high-electron- mobility transistors. J. Appl. Phys. 2009. 105, No 8. P. 084502.

13. Kensuke Takahashi, Jin-Ping Ao, Yusuke Ikawa et al. GaN Schottky diodes for microwave power rectification. Jpn. J. Appl. Phys. 2009. 48, No 4. P. 04C095.

14. Kim B.J., Ryu Y.R., Lee T.S., and White H.W. Output power enhancement of GaN light emitting diodes with p-type ZnO hole injection layer. Appl. Phys. Lett. 2009. 94, No 10. P. 103506.

15. Kim T.K., Kim S.H., Yang S.S. et al. GaN-based light-emitting diode with textured indium tin oxide transparent layer coated with Al 2 O 3 powder. Appl. Phys. Lett. 2009. 94, No 16. P. 161107.

16. Miyajima T., Watanabe H., Ikeda M., and Yokoyama H. Picosecond optical pulse generation from self-pulsating bisectional GaN-based blue- violet laser diodes. Appl. Phys. Lett. 2009. 94, No 16. P. 161103.

17. Huang L., Yeh S., Lee C., Tang H., Bardwell J., and Webb J.B. AlGaN/GaN metal-oxide- semiconductor high-electron mobility transistors using oxide insulator grown by photo- electrochemical oxidation method. IEEE Electron. Device Lett. 2008. 29, No 4. P. 284-286.

18. Piprek J. Nitride Semiconductor Devices: Principles and Simulation. Wiley, 2007.

19. Pearton S.J., Zolper J.C., Shul R.J., and Ren F. GaN: Processing, defects, and devices. J. Appl. Phys. 1999. 86, No 1. P. 1-78.

20. Lester S.D., Ponce F.A., Craford M.G., and Steigerwald D.A. High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl. Phys. Lett. 1995. 66, No 10. P. 1249-1251.

21. Chang S.J., Lin Y.C., Su Y. et al. Nitride-based LEDs fabricated on patterned sapphire substrates. Solid. State. Electron. 2003. 47, No 9. P. 1539-1542.

22. Wen T.C., Chang S.J., Su Y.K. et al. InGaN/GaN multiple quantum well green light-emitting diodes prepared by temperature ramping. J. Electron. Mater. 2003. 32, No 5. P. 419-422.

23. Reynolds C.L. and Patel A. Tunneling entity in different injection regimes of InGaN light emitting diodes. J. Appl. Phys. 2008. 103, No 8. P. 086102.

24. Mingsheng Xu, Qi Mu, Longfei Xiao et al. Temperature dependent current-voltage curves study of GaN-based blue light-emitting diode. Mater. Exp. 2016. 6, No 2. P. 205-209.

25. Sang-Heon Han, Dong-Yul Lee, Hyun-Wook Shim et al. Improvement of efficiency and electrical properties using intentionally formed V-shaped pits in InGaN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 2013. 102, No 25.

26. Dumin D.J. and Pearson G.L. Properties of gallium arsenide diodes between 4.2 and 300 K. J. Appl. Phys. 1965. 36, No 11. P. 3418-3426.

27. Cao X.A., Teetsov J.M., D'Evelyn M.P., Merfeld D.W., and Van C.H. Electrical characteristics of InGaN/GaN light-emitting diodes grown on GaN and sapphire substrates. Appl. Phys. Lett. 2004. 85, No 1. P. 7-9.

28. Cao X.A., Teetsov J.A., Shahedipour-Sandvik F., and Arthur S.D. Microstructural origin of leakage current in GaN/InGaN light-emitting diodes. J. Cryst. Growth. 2004. 264, No 1-3. P. 172-177.

29. Levinshtein M.E., Rumyantsev S.L., and Shur M.S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. Wiley, 2001.