Semiconductor Physics, Quantum Electronics & Optoelectronics, 24 (1), P. 90-99 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.090


References

1. Fukasawa R. Terahertz imaging: widespread industrial application in non-destructive inspection and chemical analysis. IEEE Trans. Terahertz Sci. Technol. 2015. 97. P. 1121-1127.

2. Mittleman D.M. Twenty years of terahertz imaging. Opt. Exp. 2018. 26. P. 9417-9431.
https://doi.org/10.1364/OE.26.009417

3. Martin-Mateos P., Cibiraite-Lukenskiene D., Barreiro R. et al. Hyperspectral terahertz imaging with electro-optic dual combs and a FET-based detector. Sci. Rept. 2020. 10. P. 14429.
https://doi.org/10.1038/s41598-020-71258-6

4. Stantchev R.I., Yu X., Blu T., Pickwell- MacPherson E. Real-time terahertz imaging with a single-pixel detector. Nature Commun. 2020. 11. P. 2535.
https://doi.org/10.1038/s41467-020-16370-x

5. Hartwick T.S., Hodges D.T., Barker D.H., Foote F.B. Far-infrared imagery. Appl. Opt. 1976. 15. P. 1919-1922.
https://doi.org/10.1364/AO.15.001919

6. Gatesman A.J., Danylov A., Goyette T.M. et al. Terahertz behavior of optical components and common materials. Proc. SPIE. 2006. 2006. P. 6212.
https://doi.org/10.21236/ADA461642

7. Busch S., Weidenbach M., Fey M., Schafer F., Probst T., Koch M. Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics. J. Infrared, Millimeter, Terahertz Waves. 2014. 35. P. 993-997.
https://doi.org/10.1007/s10762-014-0113-9

8. Davies A.G., Burnett A.D., Fan W., Linfeld E.H., Cunningham J.E. Terahertz spectroscopy of explo- sives and drugs. Mater. Today. 2008. 11. P. 18-26.
https://doi.org/10.1016/S1369-7021(08)70016-6

9. Ok G., Park K., Lim M.-Ch., Jang H.-J., Choi S.-W. 140-GHz subwavelength transmission imaging for foreign body inspection in food products. J. Food Eng. 2018. 221. P. 124-131.
https://doi.org/10.1016/j.jfoodeng.2017.10.011

10. Shchepetilnikov A.V., Gusikhin P.A.,•Muravev V.M. et al. New ultra-fast sub-terahertz linear scanner for postal security screening. J. Infrared, Millimeter, Terahertz Waves. 2020. 41. P. 655-664.
https://doi.org/10.1007/s10762-020-00692-4

11. Sizov F., Zabudsky V., Golenkov A., Shevchik- Shekera A. Millimeter-wave narrow-gap uncooled hot-carrier detectors for active imaging. Opt. Eng. 2013. 52. P. 033203.
https://doi.org/10.1117/1.OE.52.3.033203

12. Sizov F. Detectors and Sources for THz and IR. Materials Research Foundations, Vol. 72. Millersville, PA, 2020. 13. Neu J., Schmuttenmaer Ch.A. Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 2018. 124. P. 231101.
https://doi.org/10.1063/1.5047659

14. Smolyanskaya O.A., Chernomyrdin N.V., Konovko A.A. et al. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Progr. Quant. Electr. 2018. 62. P. 1-77.
https://doi.org/10.1016/j.pquantelec.2018.10.001

15. Guerboukha H., Nallapan K., Skorobogatiy M. Towards real-time terahertz imaging. Adv. Opt. Photon. 2018. 10. P. 843-937.
https://doi.org/10.1364/AOP.10.000843

16. Glaab D., Boppel S., Lisauskas A. et al. Terahertz heterodyne detection with silicon field effect transistors. Appl. Phys. Lett. 2010. 96. P. 042106.
https://doi.org/10.1063/1.3292016

17. Jokubauskis D., Minkevicius L., Seliuta D., Kasalynas I., Valusis G. Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects. Opt. Eng. 2019. 58. P. 023104.
https://doi.org/10.1117/1.OE.58.2.023104

18. Kim K.W., Kim K.-S., Kim H. et al. Terahertz dynamic imaging of skin drug absorption. Opt. Exp. 2012. 20. P. 9476-9484.
https://doi.org/10.1364/OE.20.009476

19. Kasban H., El-Bendary M.A.M., Salama D.H. A comparative study of medical imaging techniques. Int. J. Information Sci. Intelligent System. 2015. 4, No. 2. P. 37-58.

20. Siebert K., Loffler T., Quast H. et al. All- optoelectronic continuous wave THz imaging for biomedical applications. Phys. Med. Biol. 2002. 47. P. 3743-3748.
https://doi.org/10.1088/0031-9155/47/21/310

21. Holst G.C. Electro-optical Imaging System Performance. Bellingham, WA, SPIE Optical Eng. Press, 2003.

22. Friederich F., Spiegel W., Bauer M. et al. THz active imaging systems with real-time capabilities. IEEE Trans. Terahertz Sci. Technol. 2011. 1. P. 183- 200.
https://doi.org/10.1109/TTHZ.2011.2159559

23. Triki M., Duhant A., Poulin C. et al. Real-time nondestructive imaging with THz waves. 2016 21st Intern. Conf. on Microwave, Radar and Wireless Communications (MIKON), Krakow, 2016. P. 1-3.
https://doi.org/10.1109/MIKON.2016.7492135

24. Sherry H., Grzyb J., Zhao Y. et al. A 1 kpixel CMOS camera chip for 25 fps real-time terahertz imaging applications. 2012 IEEE Intern. Solid-State Circuits Conference.
https://doi.org/10.1109/ISSCC.2012.6176997

25. Holst G.C. Testing and Evaluation of Infrared Imaging Systems. Bellingham, WA, SPIE Optical Eng. Press, 1998. 26. Kopeika N.S. A System Engineering Approach to Imaging. Bellingham, WA, SPIE Optical Eng. Press, 1998.

27. Squires D., Constable E., Lewis R.A. 3D printing of aspherical terahertz lenses and diffraction gratings. 39th Intern. Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2014.
https://doi.org/10.1109/IRMMW-THz.2014.6956117

28. Lo Y.H., Leonhardt R. Aspheric lenses for terahertz imaging. Opt. Exp. 2008. 16. P. 15991-15998.
https://doi.org/10.1364/OE.16.015991

29. Busch S., Weidenbach M., Fey M., Schafer F., Probst T., and Koch M. Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics. J. Infrared, Millimeter, Terahertz Waves. 2014. 35. P. 993-997.
https://doi.org/10.1007/s10762-014-0113-9

30. Kawamura J., Paine S., Papa D.C. Spectroscopic measurements of optical elements for submillimeter receivers. Proc. 7th Intern. Symposium on Space Terahertz Technology, Charlotteswille, 1996. P. 349-355.

31. Naftaly M., Miles R.E. Terahertz time-domain spectroscopy for material characterization. Proc. IEEE. 2007. 95. P. 1658-1665.
https://doi.org/10.1109/JPROC.2007.898835

32. Grichkowsky D., Keiding S., Van Exter M., Fattinger Ch. Far-infrared time-domain spectroscopy with terahertz beams of dielectric and semicon- ductors. J. Opt. Soc. Amer. 1990. 7. P. 2006-2015.
https://doi.org/10.1364/JOSAB.7.002006

33. Holst G.C., Driggers H.G. Small detector in infrared system design. Opt. Eng. 2012. 51. P. 096401.
https://doi.org/10.1117/1.OE.51.9.096401

34. McCann M.T., Jin K.H., Unser M. Convolutional neural networks for inverse problems in imaging: A review. IEEE Signal Processing Mag. 2017. 34. P. 85-95.
https://doi.org/10.1109/MSP.2017.2739299

35. Huang J., Rathod V., Sun C. et al. Speed/accuracy trade-offs for modern convolutional object detec- tors. Conference on Computer Vision and Pattern Recognition, July, 21-26, 2017, Honolulu, HI, USA.
https://doi.org/10.1109/CVPR.2017.351

36. Girshick R., Donahue J., Darrell T., Malik J. Region- based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Analysis Machine Intell. 2016. 38. P. 142-158.
https://doi.org/10.1109/TPAMI.2015.2437384

37. Howard A.G., Zhu M., Chen B. et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv:1704.04861 [cs.CV]. 2017.

38. Dutta A., Zisserman A. The annotation software for images, audio and video. Proc. 27-th ACM Intern. Conference on Multimedia. Nice, France, October 21-25, 2019.
https://doi.org/10.1145/3343031.3350535