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1. Introduction 

Along the way to construct the kinetic equation from 

some “first principles”, the rightful place belongs to the 

influence of external macroscopic and microscopic fields 

on movement of charged band carriers. The scattering 

fields give the main, principal contribution to the 

existence and form of the collision integral. The evident 

influence of macroscopic fields on the scattering system 

is not usually taken into account, and one supposes that 

for the scheme of the second order perturbation theory, 

and the external field can be omitted (see [1]). Special 

consideration shows that direct influence of macroscopic 

fields on the form of collision integral and of 

corresponding non-equilibrium distribution function can 

change the value of kinetic coefficients. 

2. One-particle density matrix Hamiltonian and 

scattering system 

Let us design by using the symbols А, В etc. some set of 

quantum numbers (for instance, components of space 

wave vector), which characterize the state of each 

separate band particle; farther, for simplicity, we say here 

about electrons. In what follows, we do not use the direct 

designations for spin variables, because processes of spin 

overturn are not considered here. The act of averaging we 

designate by angle brackets; formally that procedure is 

performed using the non-equilibrium statistical operator 

of total system of electrons and external system, 

representing the selected scattering field that interact with 

electron system (see, for example, [912]). 

Define the one-particle density matrix )(tAB  by 

the following manner:  
 

)()()( tatat ABAB
 .   (1) 

 

Here, t is time, 

Aa  and Aa  are operators of 

generation and annihilation of electron at the state A. The 

averaged value of given matrix (we call it below as the 

one-particle density matrix) is  
 

)()()()( tatattf ABABAB
 .   (2) 

 

The dynamic value  




N

n

nrCC

1


 that belongs to an 

additive type, in the representation of secondary 

quantization has the form  

BA

ABBA aaCC

,

ˆ , where 

      rdrrCrC ABBA

 3* ˆ   . In this formula, the value 

 rA


  is the wave function of separate band particle, 

which belongs to the state A. 

Deduce an equation, solution of which is the one-

particle density matrix ABf  of the considered non-

equilibrium system of particles. As a start point, we use 

the standard motion equation for the operator )(tAB  in 

the Heisenberg representation: 
 

  ).()(,)( tHHtHt
t

i AB
tottot

AB
tot

AB
AB 



  (3) 
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One can represent the Hamiltonian of considered 

total system H
tot

 as the sum of four parts: Hamiltonian He 

for electrons non-interacting with microscopic scattering 

fields, Hamiltonian Hee related to inter-electron 

interaction, individual Hamiltonian HS of external 

scattering system and Hamiltonian HeS that is related to 

interaction of band electrons with the scattering system: 
 

eSSeee
tot HHHHH  .  (4) 

 

In this paper, we assume only the point charged 

impurities as external scattering system )( IS  .  

Here, we use the constant uniform electrical E


 and 

magnetic H


 fields. Then the Hamiltonian of free band 

carriers is  
 

rEerA
c

e
pHe











 )(ˆ .  (5) 

Here, 
r

ikp 










ˆˆ  is the momentum operator, 

 p


  – dispersion law, )ˆ( p


  – operator of the kinetic 

energy, and A


 – vector-potential of magnetic field. In 

this work, we suppose that the dispersion law has the 

simple form:  
 

  mkmpp 22 222 


 ,  (6) 

 

where m is the effective mass. 

The quantum limit of strong magnetic field in this 

paper is not considered. Therefore, in the Hamiltonian 

(5) we omit the terms of the order A
2
; the latter is 

acceptable at the condition mceH 2 . Let 

    122121 2/1 AAAAAA 
 . Then it follows from 

Eq. (5): 

 

 


 prA
mc

e
rEepHHHH HE

e
ˆ)()ˆ()()()0( 



 (7) 
 

Assume the following orientations of electrical E


 

and magnetic H


 fields: 
 

 0,0,xEE 


,  zHH ,0,0


,  0,0,yHA z


. (8) 

 

For the considered case (see Eq. (6)), the separate 

items of Hamiltonian He are 

 

mkmppH 2
ˆ

2)ˆ()ˆ( 222)0(





 ,
 

x
E exEH )(

,
 (9) 

y
mc

kHe
H xzH

ˆ
)( 

 .
  

In the representation of secondary quantization, the 

Hamiltonian of electrons that do not interact with 

microscopic scattering fields is (see Eqs (7) and (9))  
 

   

      





 

AB

BAAB
H

AB
E

AB

AB

BAABe

AB

BAABee

HHH

HaaHH

.)()(0
 (10) 

 

As a result, the total Hamiltonian presented in 

Eq. (3) has the form 
 

     

AB

BAABeIABe
tot HHH .  (11) 

 

The plane waves are the natural basis for spatially 

uniform system of electrons: 
 

   rkiLr AA


exp2/3 .     (12) 

 

Substituting the expression (11) into (3) and 

performing necessary commutations of Fermi operators, 

one obtains the following equation for the density matrix:  
 

        

           

















.,,

)(

BeIABAeI

ABeBAe
AB

tHtttH

tHtH
t

t
i

 (13) 

3. Averaged values and fluctuations 

Separate the density matrix )(tAB  and Hamiltonian 

)(tH tot
 into averaged values and fluctuations. Let us 

assume that the averaged scattering potential is zero. 

Then 
 

)()()()()( ttfttt ABABABABAB  ,  (14) 

 

       
ABeIABeIABeIABeI tHtHtHtH )()()()(   . (15) 

 

Non-dependence (or very weak dependence) of the 

electron density on spatial coordinates is provided by the 

following condition: 
 

)()()( tftftf AABAAABAB  .  (16) 

 

Accept also the condition below (see [6]): 
 

tftt ABABAB  .  (17) 

 

Averaging the latter expression, we find: 
 

     )(St)()(
)(

tfitfHtfH
t

tf
i ABABeBAe

AB  







,   

 (18) 
 

where 
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    


 



.))(,)())(,)(

)(St

ttHttH
i

tf

ABBA

AB



 (19) 

 

Thereof (see (16)): 
 

     )(St)()( tfitfHtfH
t

f
i A

B

ABBAeBAABe
A  




 , (20) 

 

    .))(,)())(,)(

St

  



B

ABBABAAB

A

ttHttH
i

f



(21) 

 

One calls Eq. (20) as the kinetic equation and the 

expression (21) as the collision integral.  

Subtracting Eq. (18) from Eq. (20), we find (terms 

of second order of trifle are here omitted): 
 

      

   )22(.)()()(

)())()(

ABAB

ABeBAeAB

tHtftf

tHtHt
t

i













 

Farther in Eq. (31), we consider the averaged 

distribution function to be smooth in comparison with 

fluctuating values. Using the Laplas transformation [15]: 
 






0

)exp()()( dttit ,  

 









0

0

exp)(
2

1
)(

i

i

dtit ,  (23) 

 
 

one obtains: 
 

 

    

   ,)(

)())(

)(0

ABAB

ABeBAe

ABAB

Hff

HH

ti














   (24) 

 

     .,)(expIm

2

1
St

2




















  

B

BAAB

A

Hidd

f


(25) 

4. Correlation for scattering potential of charged 

impurities 

Designate the non-screened electrical potential created by 

charge disposed in the point 0r


 by the symbol 

    еrHtr eI
I 

 ,)(
. The total potential created by all 

centers has the form 
 

   




N

j

jI
I rrr

1

)( 
,  (26) 

     

   .exp)(2

exp)(0,,

1

)(

1

)()(













N

j

j
I

N

j

j
II

rqiq

rqiqCq





   (27) 

 

Here, jr


 is the radius-vector of j-th impurity, 

L
I qeq  2)( 4)(


 and N – total number of impurities 

in crystal. 

Calculating correlations over positions of 

impurities, we have (see [3] and [9]) 
 

       



,

24)()( 4,,
q

I
II qqqq 



  (28) 

Here,  
 

   .32(2

,)(

422322

2

,

2

qneqn LI
I

I
q

I

q
I

q
I











      (29) 

 

Turn out to the equation for fluctuation of the 

density matrix in the form (31) and use the following 

approximation:  
 

  AAAAAeH  
 .          (30) 

 

Usually, for the standard approach (see [1−3]), they 

use neglecting the field terms in the collision integral; in 

particular the form (7) can be used, where 
 

)0(HH e                           (31) 

 

and the equation for fluctuation of the density matrix (24) 

accepts the simplified form  
 

   
   .0)(

)(0





ABBA

ABBAAB

Hff

ti 
 (32) 

 

If the field terms, maintained in the Hamiltonian He 

(here, we consider some non-standard or “field” 

approach), are used in the form (31), it leads to the 

following equation: 
 

    AAAAAAe HH  
0

 ,   (33) 
 

   
   .0)(

)(0





ABBA

ABBAAB

Hff

ti 
  (34) 

 

Then, after formal transition   )(20 xixi   

and designation ABBAAB   , we obtain 

 

 

      .)(0

2)(





ABABAB

ABAB

Hffit 


 (35) 
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The standard approach can be considered as a 

limited case of non-standard approach. For this approach, 

we apply the simple approximation: 
 

AA  .   (36) 

 

As the initial form of density matrix )(tAB , we use 

 

  ABAB aat  0 .  (37) 

 

Here and farther, we don’t show the argument t = 0 

for Fermi operators Aa  and 

Aa . 

Let us construct the correlator for 

  ABABAB aaaat   0  and  

 

    .00 ABABABABBAAB aaaaaaaatt 










 

 (38) 
 

Using Bogolubov’s principle of weakening of 

correlations and performing weak-coupling for two-

particle correlator ,ABAB aaaa 



  one obtains the 

following expression:  
 

  
        .112

,)(

2

)0()0(

ABBABABAAB

BAAB

ffff 






 (39) 

 

Completing calculation of the corresponding 

correlators, represent the selected collision integral in the 

form 
 

AeIA ff StSt  .   (40) 

 

Introducing the designations kA


  and kB 


 

to Eq. (35), we obtain (here,  kff
k


  ) 

 

     .
)2(

1
St 23

3  



 q

IkqkqkkeI Hffqdkf 








  (41) 
 

For practical calculations, further we use the 

following approximation for dielectric function (here 1/q0 

is the screening length, )(q  – standard step-function):  

 

     01,1 qqq L 


.  (42) 

5. Calculation of the energies A  

Accept the components of wave vectors k


 as quantum 

numbers: 

 

 zyx kkkkA ,,


,  
 

 zzyyxx qkqkqkqkB  ,,


. (43) 

The set of matrix elements of Hamiltonian He is as 

follows (see Eq. (7)) 
 

       AB
H

AB
E

ABABe HHHH )()()0( ˆˆˆˆ  .  (44) 

 

Here (see Exs (9)), 
 

   
AB

AB kmH 







 22)0( ˆ

2ˆ


 ,   xABAB
E ExeH )(ˆ )(  , 

   
ABx

z
AB

H ky
mc

He
H ˆˆ )( 

 .     (45) 

Note that Hamiltonian eĤ  containing field-

dependent terms is not arbitrary invariant in space. The 

following wave functions are most convenient for 

calculations:  
 

   wkiLwkwA www exp;);( 2/1 ,      (46) 

       wqkiLwqkwB wwwww   exp; 2/1
.  (47) 

 

Here and farther, xw   or yw  or zw  , and 
 

22 LwL  .    (48) 
 

The linear dimension L of the system exceeds 

utmost an every characteristic length ( L ). The 

noted functions are proper for the operator of momentum 

k
̂

  (and for the operator of kinetic energy):  
 

   wkkwki wwww ;;  , 

   wkkwk wwwx ;; 22  .  (49) 

 

For the parabolic dispersion law 
 

         rkmkrkkrk








;2;;ˆ 22   .  (50) 

 

When one uses the field variant, the Hamiltonian He 

evidently depends on spatial coordinates. But at the same 

time, all the points of r


-space are equivalent. Note that 

wave functions are invariant relatively to the shift of 

argument w on the length that is proportional to the 

deBroglie wavelength. 

Now calculate the matrix components of radius-

vector (here :)L  
 

   

        











diLqdwwiqwL

dwwkwkww

w

w

Lq

Lq

w

L

L

w

L

L

BAAB

2/

2/

2

2/

2/

2/

2/

exp1exp1

;;*)(

   (51) 

оr  
 

 

        .sin1cos1

,)(

2/

2/

2

2/

2/

2








w

w

w

w

Lq

Lq

Lq

Lq

wAB

dLqidLq

qLFw

       (52) 
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Shift the edges of area (49) to some little distance 

lw, which is sufficiently small as compared to the length 

L. Then,  
 

       

    .sin/1

cos1,,,

)2/(

)2/(

2

)2/((

)2/(

2

















dLqi

dLqlqLFqLF

Llq

Llq

Llq

Llq

wwww

ww

ww

ww

ww  (53) 

 

Let us introduce the following designations: 
 

   2,2 LlqBLlqD wwwwww  .  (54) 

 

Then, 
 

  ,sinsin2sinsin

coscossinsincos

wwwwwww

wwwwww

D

B

BDLqBBDD

BDBBDDd

w

w






 (55) 

 

  .coscos2coscos

sinsincoscossin

wwwwwww

wwwwww

D

B

DBLqBBDD

BDBBDDd
w

w






  (56) 

 

It follows: 
 

 

   .sin2sinsin

,)(sin2coscos

wwww

D

В

wwww

D

В

lqLqLqd

lqLqLqd

w

w

w

w












 (57) 

 

Now one finds the possibility to refuse from 

imaginary part in the equation of matrix ABw)( . We rely 

to the factor   02sin Lqw ; then we take 

  12cos Lqw . The length ww lq  is selected with the 

relation   1sin wwlq  and ww ql 1 . 

As a result (here ww qkBAAB  , ), 

approximately 0sin 


w

w

D

B

d  and 

 

     

      .1sin2cos1

exp1

2

2

wwwwww

D

B

wAB

qlqLqLqLq

diLq

w

w



 


  (58) 

 

The transformation (63) is not obviously single. We 

accept the shown form, because just this one gives the 

expected physical result (see below (124) and (125)).  

Using the designations kkA


  and qkkB


 , one 

obtains the forms (see (9)) 

 

 
y

x

x

x
AAA

k

k

k

eE

m

k
k 


 


 2

2

22

,    (59) 

 

   yyy

xyyx

xxx

xx

qkkBAAB

qkk

qkqk

qkk

qeE

qqk
m



















2

2
2

2
2

 (60) 

(here, mceH z ).  
m

k
kAAA

2

22



 . 

 

Let us simplify the calculations by using the 

approximation ww kq   and these changes:  

 

 

  .3231

,3231

2222

2222









mkkk

mkkk

yy

xx
  (61) 

 

Here, )(2)(3 2/12/3B  FFTk  is the averaged 

energy,   
 

   





0
exp11

1
)(

w

dww

r
F

r

r ,   TkBF  .  (62) 

 

As a result,  
 

   
.

33
2

2

32
2

2











 m

qkqk
qE

m

e
qqk

m

xyyx
xxqkk




 (63) 
 

Wе don’t consider here quantazing the magnetic 

field (that is only b << 1); therefore, values of the order 

b
2
 will be omitted in every case. With the designations  

 

)(3 EkEe


 ,    b3   (64) 

 

the expression (66) can be written as 
 

    .
2

2
)(

2
















q
qkqbkkqbkkk

m
zzyxyxyx

E
xqkk




 (65) 
 

The latter expression prompts to introduce a new 

vector  k


 : 

 

        kkkk zyx


 ,, , (66) 

 

where 
 

  y
E

xxx bkkkk  )(


,   

  xyy bkkk 


,   zz kk 


.   (67) 

 

The reverse transformation (by using the inequality 

b
2
 << 1) is 
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. , )()()( E
xxyy

E
y

E
xyxx bkbkbkkbk  (68) 

 

Then (with account of the approximations shown 

before), one obtains from (65)  

 













 2

22 q
q

mqkkqkk


  . (69) 

6. Balance of forces for electrons and impurities 

For a stationary spatially uniform system, the kinetic 

equation (20) acquires the form 
 

  
k

k f
k

f
Hkv

c
E

e








St

1














 .   (70) 

 

Construct the first moment of the equation (70), 

applying there the following operator 
 

  


 kdk


33
22    (71)  

to both sides. 

Then, we obtain a vector equation having the sense 

of balance of dynamical and statistical fields forced by all 

the system of band carriers: 
 

   
 

    .01

St
2

2
1 3

3






  

eI

kIe

FuHсEe

kdfk
n

uHсEe






 (72) 

 

Here, the value eIF


 is the resistant force acting 

from the side of charged impurities (something like to the 

“friction force”). The values 

  
 kdfn

k


 3

3
2

2
, 

   

 
 






 kdfkv
nkdkf

kdkfkv
u

k







 3

33

3

)2(

2
 (73) 

 

are the density of electrons and drift velocity of whole 

band electrons. 

After non-complicated transformations of the 

formula (45), we obtain the following expression:  
 

   



 4233

223

4

2 qqqqdqdkf
n

mne
F

L

I
eI






.  (74) 

 

Performing here integration over the components of 

vector q


 (see (74)), we find 

 

  














 

 




33

0
223

4

))((ln
2

dkkf
q

q

n

nme
F M

L

I
eI .  (75) 

 

7. The model of non-equilibrium distribution function  

As one can see, the friction force (75) is the linear 

integral of non-equilibrium distribution function )(kf


. 

As the sufficiently simple model of )(kf


, we accept 

here the Fermi function with the shifted argument (see 

also [9]): 

     
1

B

F

22

0

2
exp1





























 


Tk

mumk
kkfkf u





. 

 (76) 
 

Introduce three-dimensional vectors K


, )(uK


 and 

several dimensionless values:  
 

 0,, )()()( u
y

u
x

u KKK 


,  x
E

x
u

x mukK  )()(
,  

y
E

x
u

y mubkK  )()(
,     (77) 

   zxyyxzyx bbKKKK  ,,,,


,   (78) 

tTmkK


 B2 ,  YTmkK B
u


 2)(

,   TkBF .  

 (79) 
 

Тhen, the “friction” force (75) takes the form 
 

 

  

 
.
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2
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0
233
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









 
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



















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Yt

tebtt

q

q

n

neTkm
F

z
p

M

L

I
eI









  (80) 

 

Introduce the dimensionless electric field and 

current density:  
 

TEEW


 ,  uTkmjjJ


B0  .     (81) 

 

Here, 
 

eTmkET  32 B , mTkenj B0  .  (82) 

 

It follows from (79) and (81) that 
 

 zeWbWJY


 .       (83) 

 

Then, the balance equation acquires the form 
 

 
 

  
   














,
exp1 2
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2/3

)(

JeWbWt

tdetbtt

F
JebW

z

z
p

I
z







   (84) 

 

where 
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  
















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0
2/5

B
2/12

432/5

)( ln
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ne M

L

I
I


. (85) 

 

For 0qqM  ,  

 

 
 

   










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


 2/1
2

2/1
2

2
1B

0

84
ln

2

1
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FFme

FTk
qq

L
M


.  (86) 

 

If the external magnetic field b is absent, the 

equation (84) passes to the following equation: 
 

 
    








2

31

2/3

)(

exp1
0

Jt

tdtt

F
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p
I

y 




 .     (87) 

 

Designate the mobility tensor with the symbol ̂  

and write here:  
 

Eenj


 ˆ ,   WJ


min
ˆ  ,     (88) 

 

 
 

 
 













2/3

2/1

2/3

2/1

B

0
min

2

2

3

F

F
M

F

F

Tmk

e

m

e

enE

j

T


.  

 (89) 
 

The dimensionless magnetic field сHb zmin . In 

absence of magnetic field, jiji , . For the system 

CGSE and m = 2·10
–28

, T = 100 K, we find 

M = 8.1·10
5
 CGSE.  

Determine the conditional free-path length L  and 

averaged length of deBroglie wave   by using the 

relations:  
 

еmL  2ˆ ,   m2  .    (90) 

 

Тhen, the equality  
 

)(L     (91) 
 

can be written as WJ   or min
ˆ  . At the 

condition L , or WJ


 , the concept “mobility”, 

how we shall see below, loses its usual meaning, and 

description of macroscopic movement of band carriers 

requires other ways.  

If electrical field and current density are weak, that 

is  
 

1 JW


,     (92) 

 

one can linearize the model non-equilibrium distribution 

)(kf


. In this case, the relation of dimensionless 

electrical field W


 with the dimensionless density of 

current J


 becomes the linear equation 

 
 

  
  
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z
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z
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



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


 

   (93) 

8. Current-voltage characteristics in absence of 

magnetic fields 

At b = 0 (that is for H = 0), the linear equation (93) has 

the form (external macroscopic electrical field is directed 

along the x-axis): 
 

    xIIxx JQJW  )()( , (94) 

 
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







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












FF

F

dt

t

tt

F
 (95) 

 

Accordingly to (94) and (95), the current-voltage 

characteristic has the form 
 

  11
1

)(
)1(

min




 Ixxx QWWJ  .  (96) 

 

It follows thereof: 
 

  )(min
)0( 0 IQW  , 

 

    )()(min
)1( 10 II QQW  ,  (97) 

)(
)0()1( 1 IQ  .   (98) 

 

One can see from the formula (85) that for field 

variant the concept “mobility” has a meaning only at this 

condition: 
 

1)( IQ .  (99) 

 

In this case, 
)0()1(0  . As it also follows from 

(85), the distinction between results of calculations for 

standard field variants disappears at the conditions 

1)( IQ  or min
)0(  . 

9. Galvanomagnetic kinetic effects  

9.1. Kinetic characteristics calculated for typical linear 

equation of forces balance  

For the typical case, we write the vector equation (97) as 

the system 
 

  xIyx JQbJW  )( ,    (100) 

  yIxy JQbJW  )( .     (101) 
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Here, we accept b
2
 << 1. The components of 

mobility tensor 
)0(̂  are  

 

 

     
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I

yxxy 22
)(

min)0()0(


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At presence of magnetic field zzeHH


  and 

current  0,xjj 


, the longitudinal component jx, 

transverse component of electrical field Ey and Hall 

constant 
)0(

HR  are 

 

   
  
 
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 (103) 
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 
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y
H

1)0(  .      (105) 

 

As one can see, in the typical variant the 

longitudinal conductivity 
)0(

||
)0(

||  en  and Hall constant 

)0(
HR  do not depend on the intensity of magnetic field. 

9.2. Kinetic characteristics calculated for specific linear 

equation of forces balance  

Write the components of linear vector equation (see 

formula (96)): 
 

 yxxIyx bJWJQbJW  )()( ,      (106) 

 

 xyyIxy bJWJQbJW  )()( .    (107) 

 

Solving this system of equations, one applies the 

magnetic field to be not quantized, that is 

1)0(  сHb . But the value b  can be comparable 

with )( IQ  and even exceed it. As a result 
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Consider the case  0,xjj 
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Comparing the results obtained in the sections (9.1) 

and (9.2), we find:  
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It follows that formulae (119), (120) and the 

meanings of mobility and Hall angle have a sense at the 

following condition only:  
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The distance of free-path (see (90)) is  
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If at the inequality (112) the value )( IQ  is 

sufficiently close to unity, one can say about a low 

mobility or about definite “demobilization” of band 

electrons due to the extremely high intensity of 

scattering. The limit of mobility 0
)1(

||   is achieved at 

1)( IQ . 

 

One obtains from (90) and (91): 
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It follows thereof that retention of field terms in the 

collision integral is the reason of appearance of quantum 

amendment to kinetic coefficients, for instance: 
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As a result, we obtain the important conclusion: the 

quantum kinetic equation distinguishes from the classical 

kinetic one by retention of field terms in the collision 

integral. 



SPQEO, 2021. V. 24, No 1. P. 34-42. 

Boiko I.I. Kinetic equation having the integral scattering term with a linear form … 

42 

10. Conclusion 

One can make the conclusion that account of the field 

terms in the collision integral results there in appearance 

of deBroglie wavelength λ and comparability of it with 

the free-path distance L. Taking into account the finite 

ratio of λ and L, we can say about a quantum kinetic 

equation in total. If a consideration does not use directly 

the field terms in the collision integral, the kinetic 

equation leaves to be the classic one. 
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Кінетичне рівняння, яке містить інтегральний член розсіювання з лінійною формою зовнішніх 

електричного та магнітного полів 

 

І.І. Бойко 

 

Анотація. У багатьох випадках при розгляді кінетичного рівняння в інтегралі зіткнення даремно не враховується 

наявність зовнішніх електричного та магнітного полів у явному вигляді. Насправді існує певна причина уважно 

використовувати в інтегралі зіткнення вищезазначені поля і правильно оцінювати кінцеві результати, 

приймаючи відношення усередненої довжини хвилі деБройля до середньої довжини вільного пробігу. 

 

Ключові слова: кінетичне рівняння, інтеграл зіткнень, рухливість. 

 


