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1. Introduction

Along the way to construct the kinetic equation from
some “first principles”, the rightful place belongs to the
influence of external macroscopic and microscopic fields
on movement of charged band carriers. The scattering
fields give the main, principal contribution to the
existence and form of the collision integral. The evident
influence of macroscopic fields on the scattering system
is not usually taken into account, and one supposes that
for the scheme of the second order perturbation theory,
and the external field can be omitted (see [1]). Special
consideration shows that direct influence of macroscopic
fields on the form of collision integral and of
corresponding non-equilibrium distribution function can
change the value of kinetic coefficients.

2. One-particle density matrix Hamiltonian and
scattering system

Let us design by using the symbols 4, B etc. some set of
quantum numbers (for instance, components of space
wave vector), which characterize the state of each
separate band particle; farther, for simplicity, we say here
about electrons. In what follows, we do not use the direct
designations for spin variables, because processes of spin
overturn are not considered here. The act of averaging we
designate by angle brackets; formally that procedure is
performed using the non-equilibrium statistical operator
of total system of electrons and external system,
representing the selected scattering field that interact with
electron system (see, for example, [9-12]).

Define the one-particle density matrix Pas(t) by
the following manner:

Pag () =ag(t)aa(t). 1)

Here, t is time, a, and a, are operators of

generation and annihilation of electron at the state A. The
averaged value of given matrix (we call it below as the
one-particle density matrix) is

Fae () = (paa (D) = (a5 O ax) e

N
The dynamic value C =»"C(F,) that belongs to an
n=1
additive type, in the representation of secondary

quantization has the form ézZCBAagaA , Where
AB

Cga= IWE(F)@(F)TA(F)d3f. In this formula, the value

W, (F) is the wave function of separate band particle,

which belongs to the state A.
Deduce an equation, solution of which is the one-
particle density matrix f,g of the considered non-

equilibrium system of particles. As a start point, we use
the standard motion equation for the operator p ,g (t) in

the Heisenberg representation:

.. 0
'h—%/:B = [pAB(t) , HtOt]EpAB(t) H™' —H " \5(). (3)
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One can represent the Hamiltonian of considered
total system H™ as the sum of four parts: Hamiltonian H,
for electrons non-interacting with microscopic scattering
fields, Hamiltonian H, related to inter-electron
interaction, individual Hamiltonian Hg of external
scattering system and Hamiltonian Hes that is related to
interaction of band electrons with the scattering system:
H® =H,+H,+Hg +Hg. %

In this paper, we assume only the point charged
impurities as external scattering system (S —1).

Here, we use the constant uniform electrical E and

magnetic H fields. Then the Hamiltonian of free band
carriers is

:g(ﬁ+%Aﬁ0—eEF. Q)

Here, ﬁ:hlZ:—iha—a_ is the momentum operator,
r

e (p) — dispersion law, ¢ (f)) — operator of the kinetic

energy, and A — vector-potential of magnetic field. In
this work, we suppose that the dispersion law has the
simple form:

«(p)=

where m is the effective mass.

The quantum limit of strong magnetic field in this
paper is not considered. Therefore, in the Hamiltonian
(5) we omit the terms of the order A% the latter is

acceptable at the condition [eH|%/2mc<<(e) . Let

(AA,), =(1/2)(AA +AA) . Then it follows from
Eq. (5):

p2/2m =h%k?/2m, (6)

Ho=HOQ+H® 4 H® = (6)—eEr+i(A(r)- 6)+
mc
()

Assume the following orientations of electrical E
and magnetic H fields:

=(E«,0,0), H=(0,0.H,), A=(-H,y,0,0). (8)

For the considered case (see Eq. (6)), the separate
items of Hamiltonian H, are

HO = g(B) = (F)2/2m = h2k? [om,

HE = —exE,, 9)
H (H) :_ehHZIZX y
mc

In the representation of secondary quantization, the
Hamiltonian of electrons that do not interact with
microscopic scattering fields is (see Egs (7) and (9))

He Z e )ap @Al = Z(He)ABpBA =
AB
= Z{(H O)AB + (H (E))AB + (H (H))AB }pBA'
AB

As a result, the total Hamiltonian presented in
Eg. (3) has the form

ot :Z{(HG)AB +(He| )AB}pBA :

AB

(10)

11)

The plane waves are the natural basis for spatially
uniform system of electrons:

¥, (F) > L2 explik,F).

Substituting the expression (11) into (3) and
performing necessary commutations of Fermi operators,
one obtains the following equation for the density matrix:

apAB © z (He)erAF(t)}+
+Z{ Ar’ PrB( )+ _(PAr(t): (Hel(t))rB)+}'

3. Averaged values and fluctuations

(12)

Ar PrB

(13)

Separate the density matrix p,g(t) and Hamiltonian

H™ ' (t) into averaged values and fluctuations. Let us

assume that the averaged scattering potential is zero.
Then

Pag(®) =(Pas () +3p as(t) = Fag () +3pap (). (14)

(Het ) g :<(Hel (t))AB>+8(HeI ®)ae = (Hei (1) - (15)
Non-dependence (or very weak dependence) of the
electron density on spatial coordinates is provided by the

following condition:

fas(t) =08 Fan(t) =06,5 fa(t) . (16)
Accept also the condition below (see [6]):
<apAB/at>:a<pAB>/at:afAB/at- (17)

Averaging the latter expression, we find:

afAB (t) Z Ar fFB (t) ( )rB fAF(t)}+ inSt fAB (t) !
(18)

where
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St fap(t) =

=S EH O B0 O, ~BH O ). ) ¢
I

Thereof (see (16)):

T2l

s Toa (© = (He )ga Fas 0]+ RSt £4(t) . (20)

St f,=

=3 (M (0)sa 300 00, )~ (H Q) 0 0. )} 2D
B

One calls Eq. (20) as the kinetic equation and the
expression (21) as the collision integral.

Subtracting Eq. (18) from Eq. (20), we find (terms
of second order of trifle are here omitted):

ih%{SpAB 0= Z[(HQ)AFSpFB ()~ (He ) 8p ar (©) ]+

r

+[fa )~ FA]EH (1) s -

Farther in Eg. (31), we consider the averaged
distribution function to be smooth in comparison with
fluctuating values. Using the Laplas transformation [15]:

(22)

&) = [ehepiond |
0

0+i0

-5 [e@en-iotdo (23
—oo+i0

one obtains:

—1hdp ag (t = 0) + hodp pg(0) =

= Z{(He)Ar dprg(®) - (He)rB 3 ar (0))} * (24)

T
+ (fB - fA)(SH (m))AB’

1
2p

St fA:_

X
2n

(25)
Im{jdwjdw o [-i (0+o ]Z 30 a (0), Hga (@), >}

4. Correlation for scattering potential of charged
impurities

Designate the non-screened electrical potential created by
charge disposed in the point ¥r=0 by the symbol
o"(F,t)=H,, (F)/e. The total potential created by all
centers has the form

W0)= Y onlr-1),

(26)

oV(0.d)= @ommZm(W)

\ B (27)
- 2m3(0) 0V(@) Y exp (- i, ).
i=1

Here, T;

j is the radius-vector of j-th impurity,

¢ (g) = 4ne/q%, and N — total number of impurities

in crystal.
Calculating  correlations  over
impurities, we have (see [3] and [9])

positions  of

(30(e2) 800, 7) = 45 o+ )5(0 ) 305

(28)
Here,

=(3of), 8(0),

(29)
(s0%), —2nni[o’ (@] —s2ee ny efa
Turn out to the equation for fluctuation of the
density matrix in the form (31) and use the following
approximation:
(He)Ar =Sarhop =0 prEp - (30)
Usually, for the standard approach (see [1-3]), they
use neglecting the field terms in the collision integral; in
particular the form (7) can be used, where
H, > H©O (31)
and the equation for fluctuation of the density matrix (24)
accepts the simplified form

—ihSpAB(t :O)+(h(o —sA+sB)8pAB(c0) +
+(fa— fg)(8H (©))5 =0.

If the field terms, maintained in the Hamiltonian H,
(here, we consider some non-standard or “field”
approach), are used in the form (31), it leads to the
following equation:

(32)

(He)Ar - (ﬁO)AF =3 arfiop =dar€n | (33)

—i78p pg(t = 0)+ (h> —Ep + &5 )3p pp (©) +
+(fA - fB)(5H (0)))AB =0.

Then, after formal transition i/(x+i0)— 213(x)
and designation €,5 =€, —€g =fi®@,g , We obtain

(34)

83p pg (®) = 2 18 (i — & g )

(35)
s [o0 ne (t = 0)~ (/2)(Fo — £)8H 15 ()]
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The standard approach can be considered as a
limited case of non-standard approach. For this approach,
we apply the simple approximation:

Ep €. (36)

As the initial form of density matrix p 4 (t) , we use

pas(t=0)=agas. @37

Here and farther, we don’t show the argument t =0
for Fermi operators a, and aj .
Let us  construct  the

3p as(t=0)=aga, —<a§aA> and

correlator for

(8p ns(t=0)3p we(t = 0)= <aEaAag'aA’> - <a§aA><a§'aA'>-
(38)

Using Bogolubov’s principle of weakening of
correlations and performing weak-coupling for two-

particle correlator <a§aAagfaA,>, one obtains the

following expression:

<(5p (0), 8 gsg,(wf))+> _

=218 (0 + )8 (0~ Opg S aed per [fall— fe)+ fall—fa)]

(39)

Completing calculation of the corresponding
correlators, represent the selected collision integral in the
form

Sth:St el fA' (40)

Introducing the designations A—k and B>k’
to Eq. (35), we obtain (here, f, = f(IZ))

Sty (€)= — J-d3q6(§lz—§lzfq)(flzfq—fR)<6H|2>q.

T 20h
(41)

For practical calculations, further we use the
following approximation for dielectric function (here 1/q,
is the screening length, 3(q) — standard step-function):

1e (@’q)_)(]/SL)S(q—QO)-

(42)

5. Calculation of the energies €,

Accept the components of wave vectors K as quantum
numbers:

Ak =(k, Kk, k,),

B_)E_qz(kx_qx1ky_Qyvkz_qz)' (43)

The set of matrix elements of Hamiltonian H; is as
follows (see Eq. (7))

(Fe s = (A9 )ag + (A )y + (A ). (44)
Here (see Exs (9)),
(H © )AB = (hz/zm)(ﬁz) , (H (E))AB =—€(X) ag Ex,
AB
(F' (H))AB =" o, (y kAX)AB ' (45)

mc
Note that Hamiltonian H, containing field-

dependent terms is not arbitrary invariant in space. The
following wave functions are most convenient for
calculations:

P (A;W) =Wk, w)= L2 exp (ik,w), (46)

W(Byyiw) = W[(k, +au W] = L2 exp fi(k,, +a, W]. (47)
Here and farther, w=x or w=y or w=z, and

—L/2<w<L/2. (48)

The linear dimension L of the system exceeds
utmost an every characteristic length (L— o). The

noted functions are proper for the operator of momentum

Kk (and for the operator of kinetic energy):

—iV, ¥k, w) =k, ¥(k,;w),

VR (ki W)= — kG (ks w). (49)

For the parabolic dispersion law
w(k:7 )= s(nk) (k7 )= (22 f2m)w(iv) . 50)

When one uses the field variant, the Hamiltonian H,
evidently depends on spatial coordinates. But at the same
time, all the points of r -space are equivalent. Note that
wave functions are invariant relatively to the shift of
argument w on the length that is proportional to the
deBroglie wavelength.

Now calculate the matrix components of radius-
vector (here L — o0):

L/2

(W) pp = IW‘P*(kA;W)‘P(kB;W)dwz
-L/2 (51)
L/2 Lq, /2
(L) [wero (~ig,m)dw={/LaZ) [com(-ie)ds
-L/2 ~Lg, /2
or
(W) g — F(L qu):
Lq,, /2 Lq,, /2 -
~(/Lq?) J.gcos(g)dé—i(l/qu) J.?,sin(a)di. 52)
~Lg, /2 -Lg, /2
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Shift the edges of area (49) to some little distance
I, which is sufficiently small as compared to the length
L. Then,

Au (l (+L/2)

F(Law) > F(L.aub)=(1/Led)  [ecos(e)de-
Ay (ly=L/2) 53
Qu(ly+L/2) ( )
-i(1/Lg? [esin(e)de.
qw(lwfl—lz)
Let us introduce the following designations:
Dy =qW(IW+L/2)’ Bw =qw(_lw+|-/2)' (54)
Then,
DW
J&cos&_, d¢& =D,sin D, -B,,sin B, +cos D, —cos B, — (55)

-B,
— D,,sinD,, - B,,sinB, —(q,L/2)(sinD, —sinB,),

DW
jfsin ¢£d¢é=-D,cosD, +B,cosB, +sinD, +sinB, - (56)
-B

W

—-D, cosD, + B, cosB, —(q,L/2)(cos B, —cos D, ).

It follows:

DW
[2cose d - qy L oos (a, L/2)sin(a 1),

,BW

(57)

DW
I&sin g dg — q,,Lsin(qy,L/2) sin(qy Iy )-

_BW

Now one finds the possibility to refuse from
imaginary part in the equation of matrix (w) 55 . We rely

to the factor sin(q,L/2)—>0 ; then we take
|cos(ay,L/2)] —1. The length gyl is selected with the

relation sin(q,l,)—1 and I, —1/|q,,|.

As a result (here AB—>A B—k,—0, )
DW
approximately j&sin £d¢ —>0 and

_Bw

(e —(1/ quzv)_f@ exp (-ie)ds = (58)

= g L0/ Le? Joos (G,L/2)sin (1) > /0.

The transformation (63) is not obviously single. We
accept the shown form, because just this one gives the
expected physical result (see below (124) and (125)).

Using the designations k, —k and ky —>k—g, one
obtains the forms (see (9))

k>

- 2neE k
Epp > Ep —>s(k)=—— re L_rQ-2X, (59)
K, ky
h? (os
Eag =E€A 8B ™ & & 4 :Z—(qu—q2)+
m (60)
N 2meE, q, LBO kyay —ky 0,
kx(kx_qx) ky(ky_qy)
L\ h2K?
(here, Q=mneH,/mc). sAA—>sA—>a(k):W

Let us simplify the calculations by using the
approximation |q,,| << k,| and these changes:

it = (k)
k2 —><k2>

(/3)(k?) = 2me) /30,
/3)(k*) = 2m¢e)/3n.

) (61)

y y

Here, (&) =3KkgT F3,,(n)/2F,,(n) is the averaged
energy,

1 ¢ wadw
F)= , n=¢p/kgT . 62
() F(r+1)~[1+exp wom)’ " er/ke (62)
0
As a result,
2 2 3n°Q (k,q, -k
£~ —¢- A:h_( 5 2)+3n9h Oy + (qu yqx).
k- k=0 2m m (g) XHx )

(63)

We don’t consider here quantazing the magnetic
field (that is only b << 1); therefore, values of the order
b? will be omitted in every case. With the designations

3neE/(e) =k® | 3nQ/(e) =b (64)

the expression (66) can be written as

6 5 g = %{(kia K, —bk, Jay + (k, +bky Ja, + kg, —é}
(65)

The latter expression prompts to introduce a new
vector ﬁ(k):

lK)= beslk) o, )., ) (66)
where

ey )= + K — bk,

ey (K)=k, +bky, 1<, (K )=k, (67)

The reverse transformation (by using the inequality
b? << 1) is
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Ky = 1 +bic, —k{E —bk(®), K, =1, —bi, +bk{").(68)

y

Then (with account of the approximations shown
before), one obtains from (65)

h2 . q2
SIZ _Slz—ﬁ = h((DE —(Dlz_q): H{Kq —7} . (69)

6. Balance of forces for electrons and impurities

For a stationary spatially uniform system, the Kinetic
equation (20) acquires the form

%{B%[V(ﬁ%ﬁ]}%:& fo. (70)

Construct the first moment of the equation (70),
applying there the following operator

2(2n)® j K d3 (71)
to both sides.
Then, we obtain a vector equation having the sense

of balance of dynamical and statistical fields forced by all
the system of band carriers:

—~ - 2h
e[E+( c)(H Xu)]+(2n)3n

—e[E+e)Axa)+ £, =0.

JESte_, f.d% = -

Here, the value F,, is the resistant force acting

from the side of charged impurities (something like to the
“friction force”). The values

n:ﬁ [fea%

Jole) elc)acc
[k)ax @™

are the density of electrons and drift velocity of whole

band electrons.

After non-complicated transformations of the
formula (45), we obtain the following expression:

Q= [olk)r a (73)

. :_nf;;';'& [ £K)a%[ao’as(za-q?/2)a* . (7

Performing here integration over the components of
vector q (see (74)), we find

= 2me'n; gy =y —3(7 )3
Fo =it In( - J [k @5)

7. The model of non-equilibrium distribution function

As one can see, the friction force (75) is the linear
integral of non-equilibrium distribution function f (k) .
As the sufficiently simple model of f(IZ) , We accept

here the Fermi function with the shifted argument (see
also [9]):

) i) 1+exp[h2(f —mﬁ/hf/Zm—SFJ )

kgT

(76)

Introduce three-dimensional vectors K , K™ and
several dimensionless values:

R =(K®, KW, 0), K® =k +mu,/n,
K =—bk{® +mu, /, a7)

K =(KX, Ky, KZ)=(KX+be , Ky—bKX ,KZ), (78)

K/ \J2mkgT =T, AK®/J2mkgT =Y, ¢ /kgT =n.

(79)
Then, the “friction” force (75) takes the form
13/2 3/2 12 4
£ _ 28Pm 3(I3(,BT2)1 e'n | (Gu |,
ThTnel Jo
U oble T o (80)

S

Introduce the dimensionless electric field and
current density:

W =E/E;, J=7/jo=+m/keT 0. (81)
Here,

Er = (£)4/2mkgT /3nent, jo =enyfkgT /v/m. (82)
It follows from (79) and (81) that

Y =3 +W +b{W xg, ). (83)

Then, the balance equation acquires the form

Wbl T}t
XI t1P[t - b (f x&, )] d% | ®9
1+exp {[f—xVV —Xb(\/VXéz)—j]z_n}

where
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252364 (q J
Oy =T 1f Ou | (85)
() Sﬁmllz(kBT)S/Z %
For qy >>0y,
In(QM/QO)zlln{ 48L“8kBThF12(n) } (86)
2 ezx/m_ﬂFﬁz(ﬂ)F—uz(n)

If the external magnetic field b is absent, the
equation (84) passes to the following equation:

J

Designate the mobility tensor with the symbol [
and write here:

Pt

ep i)

fzenﬁli ' jz(ﬁ/“min)w ' (88)
T o _ 3men _ V2ren Fi/2(n) _ Fu2(n) .
™ enEr  2m(s)  mkgT Fyn(n) Fa/2(n)

(89)

The dimensionless magnetic field b = p,;,H,/c . In

absence of magnetic field, p;; =ng; ;. For the system
CGSE and m=2:10%, T=100K, find
M =8.1-10° CGSE.

Determine the conditional free-path length L and

averaged length of deBroglie wave A by using the
relations:

we

L=|i|y2me) fe . 2 =n/\2m(e) . (90)
Then, the equality

LW 55 (91)

can be written as J>>W or |[i|>>pp;, . At the

condition L <A , or msr\ﬂ‘ the concept “mobility”,

how we shall see below, loses its usual meaning, and
description of macroscopic movement of band carriers
requires other ways.

If electrical field and current density are weak, that
is

M‘er <<1,
one can linearize the model non-equilibrium distribution
f(IZ) . In this case, the relation of dimensionless

(92)

electrical field W with the dimensionless density of
current J becomes the linear equation

2®(.)I [£+b(Exé, )
Far2(n) t3[l+e><p(t2_n)]2

T[T+ W + bW xe, )]} exp (t2 - n)ast.

W+, x )=

(93)

8. Current-voltage characteristics in absence of

magnetic fields

At b =0 (that is for H = 0), the linear equation (93) has
the form (external macroscopic electrical field is directed
along the x-axis):

W, :JXQ(I)(n):G(I)'a(n)Jxv (94)
8n texp (tz—n)
a(n) = dt =
P25 [ e (12 (95)

_4n F () _ 4
3 Fy2(n) 3[1+exp(-n)] Fyp(n)

Accordingly to (94) and (95), the current-voltage
characteristic has the form

1

3, :Hu@wx =W, (1/Qy(n)-1) (%)
It follows thereof:

@ =W =0)= i /Qqy

n® =W £ 0)= i, (1—Q(|))/Qu>' ®7)

WO /@ =1-q, . .

One can see from the formula (85) that for field
variant the concept “mobility” has a meaning only at this
condition:

Qqu) <1. (99)

In this case, 0<p® <pn© . As it also follows from

(85), the distinction between results of calculations for
standard field variants disappears at the conditions

Quy <<lor p(o) >> Wmin -

9. Galvanomagnetic kinetic effects

9.1. Kinetic characteristics calculated for typical linear
equation of forces balance

For the typical case, we write the vector equation (97) as
the system

Wx _b‘]y :Q(I)(n)‘]x,
Wy +bJy :Q(I)(n)‘]y'

(100)
(101)
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Here, we accept b®<<1. The components of
mobility tensor 1(? are

(0) 0) Hmin
mig (H) =R (H)=-b(H)——"0—. (102)
Y ¥ QG +b*(H)

At presence of magnetic field H =H,& and

current T=(jx,0), the longitudinal component j,,
transverse component of electrical field E, and Hall
constant R are

uQ(H)
(103)

) (H m,
i ( ) Q(|)

(O)(H) b(H)
E,(H)=9@(H)E, =22 "g E,, 104
(H)=80 = o) &~y (104
o) Ey(H) 11
ROH)= Hog ) Jencl (105)

As one can see, in the typical variant the
longitudinal conductivity o =enp(” and Hall constant

RY) do not depend on the intensity of magnetic field.

9.2. Kinetic characteristics calculated for specific linear
equation of forces balance

Write the components of linear vector equation (see
formula (96)):

W, —bJ, =Qy(n) (3, +W, ~bJ, ), (106)

W, +bJ, =Qq,(m) (3, +W, +bJ, ). (107)

Solving this system of equations, one applies the
magnetic field to be not quantized, that is

o) = n@H /c <<1. But the value |b| can be comparable

with Q) and even exceed it. As a result

u® Z O (1-Quy) Q)
XX yy min
QG +b%(1-Qy) f
1-Q
1y = k% = ~Hpinb b0 f (108)

Qf) +b2(1-Q) f

Consider the case j =(j, ,0). Then

o P
jx =en u(1)+—(uxé)) E, =enp{VE,,
XX
1-Q
12 (0) = i -ay) 5 ) (209)
(M
E (] 1—
99(p) = y(b) H(yl?(b) b Qu) S(O)(b)(l—Q(,)),
Ex Hxx (b) Q(l)
@
RO(b)=| B2 0O)_| 1 (110)
H,j.(b)| lenc

Comparing the results obtained in the sections (9.1)
and (9.2), we find:

1 0 1 0
u =uP(1-Q ). 99 =92(1-q)).
R (b)= R (b) = R,
It follows that formulae (119), (120) and the

meanings of mobility and Hall angle have a sense at the
following condition only:

(111)

Quy <1. (112)
The distance of free-path (see (90)) is
L9 =[O(1-qy). (113)

If at the inequality (112) the value Q

sufficiently close to unity, one can say about a low
mobility or about definite “demobilization” of band
electrons due to the extremely high intensity of

scattering. The limit of mobility pf’ =0 is achieved at
Qun=1.

One obtains from (90) and (91):

( Q(I)) Q(|)—37t7¥/\/_

is

\/_Q(S)

It follows thereof that retention of field terms in the
collision integral is the reason of appearance of quantum
amendment to kinetic coefficients, for instance:

3t A

“ﬁO)[l_EﬁEYJ .

As a result, we obtain the important conclusion: the
quantum kinetic equation distinguishes from the classical
kinetic one by retention of field terms in the collision
integral.

L
= (114)

u

(115)
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10. Conclusion

One can make the conclusion that account of the field
terms in the collision integral results there in appearance
of deBroglie wavelength A and comparability of it with
the free-path distance L. Taking into account the finite
ratio of A and L, we can say about a quantum kinetic
equation in total. If a consideration does not use directly
the field terms in the collision integral, the Kkinetic
equation leaves to be the classic one.

References

1.

2.

Anselm ALl Introduction to Semiconductor Theory.
Prentice Hall, 1982.

Lifshitz E.M. and Pitaevskii L.P. Physical Kinetics.
Moscow, Nauka, 1984 (in Russian).

Klimontovich Yu.L. Statistical Physics. Moscow,
Nauka, 1978 (in Russian).

Gantmaher V.F. and Levinson |.B. Scattering of
Current Carriers in Metals and Semiconductors.
Nauka, Moscow, 1984 (in Russian).

10.

11.

Bogolubov N.N. Lectures on Quantum Statistics.
Kiev, Radianska Shkola, 1949 (in Ukrainian).
Bogolubov  N.N.  Non-equilibrium  Statistical
Mechanics. Collected works in 12 volumes, vol. 5.
Moscow, Nauka, 2006 (in Russian).

Zubarev D.N. Non-equilibrium Statistical Thermo-
dynamics. Moscow, Nauka, 1971 (in Russian).
Boiko I.I. Transport of Band Carriers in
Semiconductor. Palmarium Academic Publishing,
Saarbruken, 2013.

Boiko I.I. Kinetics of Electron Gas Interacting with
Fluctuating Potential. Naukova dumka, Kyiv, 1993
(in Russian).

Boiko I.I. Impurity scattering of band carriers.
Semiconductor Physics, Quantum Electronics &
Optoelectronics. 2010. 13, No 2. P. 214-220.

Boiko I.I. Dependence of the collision integral on
electric field. Semiconductor Physics, Quantum
Electronics & Optoelectronics. 2015. 18, No 2.
P. 138-143.

Kineruune piBHsIHHS, siKe MiCTUTB iHTerpaIbHMIi YieH po3ciloBaHHs 3 JiHiiiHOI0 (hopMoI0 30BHIIIHIX
€JICKTPUYHOT0 TA MATHITHOTO MOJIiB

I.1. Boiiko

AHoTamisi. Y 06araTboX BHUIAAKAX MIPU PO3TIBIAL KIHETUYHOTO PIiBHAHHS B IHTETpalli 3ITKHEHHS JapeMHO HE BPaXOBYETHCS
HAsIBHICTH 30BHIIIHIX €JIEKTPUYHOIO Ta MArHITHOTO MOJIB Yy sBHOMY BHrJsial. Hacmpapai icHye NIeBHA MPUYMHA YBAXKHO
BUKOPHCTOBYBATH B IHTErpajii 3iTKHEHHS BHWIIE3a3HAUCHI ITONI1 1 NPaBIIBHO OI[IHIOBATH KIiHIIEBI PE3yIbTATH,
NPUIMAaIOYX BiTHOLIICHHS YCEPEAHEHOT IOBXKHUHH XBUII AeBpoiiis 10 cepetHbol JOBKHHH BUILHOTO MPOOIry.

Kuio4oBi ciioBa: KiHeTHUHE PIBHSIHHS, IHTErpall 3ITKHEHb, PYXJIMBICTb.
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