Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (1) P. 019-029 (2022).
DOI: https://doi.org/10.15407/spqeo25.01.019


References

1. Gandi S., Vaddadi V.S.C.S., Panda S.S.S. et al. Recent progress in the development of glass and glass-ceramic cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: A review. J. Power Sources. 2022. 521. Ð. 230930. https://doi.org/10.1016/j.jpowsour.2021.230930

2. Wang Y., Song S., Xu C. et al. Development of solid-state electrolytes for sodium-ion battery - A short review. Nano Mater. Sci. 2019. 1, No 2. P. 91-100. https://doi.org/10.1016/j.nanoms.2019.02.007

3. Barrau B., Ribes M., Maurin M., Kone A., Souquet J.-L. Glass formation, structure and ionic conduction in the Na2S-GeS2 system. J. Non-Cryst. Sol. 1980. 37. P. 1-14. https://doi.org/10.1016/0022-3093(80)90473-1

4. Kim S.K., Mao A., Sen S., Kim S. Fast Na-ion conduction in a chalcogenide glass-ceramic in the ternary system Na2Se-Ga2Se3-GeSe2. Chem. Mater. 2014. 26, No 19. Ð. 5695-5699. https://doi.org/10.1021/cm502542p

5. Plumat E.R. New sulfide and selenide glasses: preparation, structure, and properties. J. Amer. Ceramic Society. 1968. 51. P. 499-507. https://doi.org/10.1111/j.1151-2916.1968.tb15675.x

6. Eisenmann B., Hansa J., Schaefer H. Zur Kenntnis der Selenidosilikate und -germanate Na4Si4Se10, Na2GeSe3 und Na8Ge4Se10. Z. Naturforsch. B. 1985. 40, No 4. P. 450-457. https://doi.org/10.1515/znb-1985-0402

7. Chung I., Song J.-H., Jang J. I., et al. Na2Ge2Se5: A highly nonlinear optical material. J. Solid State Chem. 2012. 195. 161-165. https://doi.org/10.1016/j.jssc.2012.05.038

8. Cheng X.-D., Wu H.-X., Tang X.-L., et al. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Phys. Sin. 2014. 63, No 18. Ð. 184208-1-184208-7. https://doi.org/10.7498/aps.63.184208

9. Dittmar G., Schafer H. Die Kristallstruktur von ger-manium diselenid. Acta Crystallogr. B. 1976. 32. P. 2726-2728. https://doi.org/10.1107/S0567740876008704

10. Kohn W. Nobel Lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 1999. 71. P. 1253-1266. https://doi.org/10.1103/RevModPhys.71.1253

11. Himmetoglu B., Floris A., de Gironcoli S., Cococcioni M. Hubbard-corrected DFT energy functionals: The LDA+U description of correlated systems. Int. J. Quantum Chem. 2014. 114. Ð. 14-49. https://doi.org/10.1002/qua.24521

12. Garcia A., Papior N., Akhtar A. et al. Siesta: Recent developments and applications. J. Chem. Phys. 2020. 152, No 20. Ð. 204108-1-204108-31. https://doi.org/10.1063/5.0005077

13. Hartwigsen C., Goedecker S., Hutter J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B. 1998. 58. P. 3641-3662. https://doi.org/10.1103/PhysRevB.58.3641

14. Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976. 13. P. 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188

15. Yu P. and Cardona M. Fundamentals of Semiconductors: Physics and Materials Properties. Springer, Berlin, 2010. https://doi.org/10.1007/978-3-642-00710-1_6