Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (1) P. 068-075 (2022).
DOI: https://doi.org/10.15407/spqeo25.01.068
References
1. Ansell N. An Introduction to Deep Space Communication. June 2015. Project: DTN MSc papers.
2. Deep Space Communications, Ed. J. Taylor. John Wiley & Sons, Inc., 2016.
3. Seibert M.A., Lim D.S.S., Miller M.J. et al. Developing future deep-space telecommunication architectures: A historical look at the benefits of analog research on the development of solar system internetworking for future human spaceflight. Astrobiology. 2019. 19, No 3. P. 462-477.
https://doi.org/10.1089/ast.2018.1915
4. Briones J.C., Hickey J.P., Roche R., Handler L.M., Hall Ch.S. Future standardization of space telecommunications radio system with core flight system. Conference Paper: AIAA International Communications Satellite Systems Conference (ICSSC), Cleveland, OH, GRC-E-DAATN34790, October 18, 2016.
https://doi.org/10.2514/6.2016-5720
5. Pooja, Saroj, Manisha. Advantagesand limitationof radioover fiber system. International Journal of Computer Science and Mobile Computing. 2015. 4, Issue 5. P. 506-511.
6. Kaushal H., Kaddoum G. Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys & Tutorials. 2017. 19, No 1. P. 57-96.
https://doi.org/10.1109/COMST.2016.2603518
7. Malik A., Singh P. Free space optics: Current applications and future challenges. Int. J. Opt. 2015. 2015. Article ID 945483, 7 p.
https://doi.org/10.1155/2015/945483
8. Atmosphere of Earth. Wikipedia, the free encyclopedia.
9. Types of Satellite Orbits.
10. Genova A., Mazarico E., Goossens S. et al. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission. Nat.Commun. 2018. 9. P. 289.
https://doi.org/10.1038/s41467-017-02558-1
11. Jones A. China to develop two super-heavy launchers for moon missions. Space News. March 3, 2021.
12. ExoMars 2022 Rover and Surface Platform (ESA/Roscosmos).
13. Òransparency of the Earth's atmosphere. Physical Enyclopedia (in Russian).
14. Ali S.H. Advantages and limits of free space optics. International Journal of Advanced Smart Sensor Network Systems (IJASSN). 2019. 9, No 1/2/3.
https://doi.org/10.5121/ijassn.2019.9301
15. Alimi I., Shahpari A., Sousa A. et al. Challenges and Opportunities of Optical Wireless Communication Technologies. In book: Optical Communication Technology, ed. by P. Pinho, 2017.
https://doi.org/10.5772/intechopen.69113
16. Demir P., Y?lmaz G. Investigation of the atmospheric attenuation factors in FSO communication systems using the Taguchi method. Int. J. Opt. 2020. 2020. Article ID 9038053. 8 p.
https://doi.org/10.1155/2020/9038053
17. Mikolajczyk J., Bielecki Z., Bugajski M. et al. Analysis of free-space optics development. Metrology and Measurement Systems. 2017. 24, No 4. P. 653-674.
https://doi.org/10.1515/mms-2017-0060
18. Khalighi M.A., Uysal M. Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys & Tutorials. 2014. 16, No 4.
https://doi.org/10.1109/COMST.2014.2329501
19. Garlinska M., Nowakowski M., Gutowska M. et al. Investigations of quantum cascade lasers for free space optics operating at the wavelength range of 8-12 µm. Acta Physica Polonica A. 2011. 120, No 4. P. 705-708.
https://doi.org/10.12693/APhysPolA.120.705
20. Raible D.E. Free Space Optical Communications with High Intensity Laser Power Beaming. 2011. ETD Archive. 251.
21. Quantum cascade lasers (QCLs).
22. Yang Q.K., Schilling C., Ostendorf R. et al. Wall-plug efficiency of mid-infrared quantum cascade lasers. J. Appl. Phys. 2012. 111, No 5. P. 053111.
https://doi.org/10.1063/1.3692392
23. Piotrowski J., Rogalski A. Uncooled long wavelength infrared photon detectors. Infrared Physics & Technology. 2004. 46, No 1-2. P. 115-131.
https://doi.org/10.1016/j.infrared.2004.03.016
24. Norton P. HgCdTe infrared detectors. Opto-Electron. Rev. 2002. 10, No 3. P. 159-174.
25. McClintock R., Haddadi A., and Razeghi M. Free-space optical communication using mid-infrared or solar-blind ultraviolet sources and detectors. Proc. SPIE. 2012. 8268, Quantum Sensing and Nanophotonic Devices IX. P. 826810.
https://doi.org/10.1117/12.913980
26. Muller R., Haertelt M., Niemasz J. et al. Thermo-electrically-ñooled InAs/GaSb type-II superlattice detectors as an alternative to HgCdTe in a real-time mid-infrared backscattering spectroscopy system. Micromachines. 2020. 11. P. 1124.
https://doi.org/10.3390/mi11121124
| |
|
|