Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (1) P. 097-107 (2022).
DOI: https://doi.org/10.15407/spqeo25.01.097
References
1.Gayral B. LEDs for lighting: Basic physics and prospects for energy savings. Comptes Rendus Physique. 2017. 18. P. 453-461.
https://doi.org/10.1016/j.crhy.2017.09.001
2. Bergesen J.D., Tahkamo L., Gibon T., Suh S. Potential long-term global environmental implications of efficient light-source technologies. Journal of Industrial Ecology. 2015. 20. P. 263-275.
https://doi.org/10.1111/jiec.12342
3. Weisbuch C. Historical perspective on the physics of artificial lighting. Comptes Rendus Physique. 2018. 19. P. 89-112.
https://doi.org/10.1016/j.crhy.2018.03.001
4. Kuritzky L.Y., Espenlaub A.C., Yonkee B.P. et al. High wall-plug efficiency blue III-nitride LEDs designed for low current density operation. Opt. Exp. 2017. 25. P. 30696.
https://doi.org/10.1364/OE.25.030696
5. Weisbuch C. Review - on the search for efficient solid state light emitters: Past, present, future. ECS Journal of Solid State Science and Technology. 2019. 9. P. 016022.
https://doi.org/10.1149/2.0392001JSS
6. Taki T., Strassburg M. Review - visible leds: More than efficient light. ECS Journal of Solid State Science and Technology. 2019. 9. P. 015017.
https://doi.org/10.1149/2.0402001JSS
7. Yang C., Kim D., Park Y., Lee J., Lee Y., Lee J. Enhancement in light extraction efficiency of gan-based light-emitting diodes using double dielectric surface passivation. Optics and Photonics Journal. 2012. 2. P. 185-192.
https://doi.org/10.4236/opj.2012.23028
8. Lin T., Wang S., Tu Y., Hung C., You Z., Chin Y. Enhanced light output of GaN-based thin-film flip-chip light-emitting diodes by surface texturing using laser ablation and chemical etching. 73rd Annual Device Research Conference (DRC). 2015. P. 123-124.
https://doi.org/10.1109/DRC.2015.7175586
9. Zhou S., Liu X., Yan H., Chen Z., Liu Y., Liu S. Highly efficient GaN-based high-power flip-chip light-emitting diodes. Opt. Exp. 2019. 27, No 12. P. 669-692.
https://doi.org/10.1364/OE.27.00A669
10. Murphy T.W. Jr. Maximum spectral luminous efficacy of white light. J. Appl. Phys. 2012. 111. P. 104909.
https://doi.org/10.1063/1.4721897
11. Zou S.-J., Shen Y., Xie F.-M., Chen J.-D., Li Y.-Q., Tang J.-X. Recent advances in organic light-emitting diodes: toward smart lighting and displays. Materials Chemistry Frontiers. 2020. 4. P. 788-820.
https://doi.org/10.1039/C9QM00716D
12. Posudievsky O.Y., Lypenko D.A., Khazieieva O.A. et al. Nanocomposite of polyaniline with partially oxidized graphene as the transport layer of light-emitting polymer diodes. Theoretical and Experimental Chemistry. 2014. 50. P. 96-102.
https://doi.org/10.1007/s11237-014-9352-z
13. Cherpak V., Stakhira P., Khomyak S. et al Properties of 2,6-di-tert.-butyl-4-(2,5-diphenyl-3,4-dihydro-2H-pyrazol-3-yl)-phenol as hole-transport material for life extension of organic light emitting diodes. Opt. Mater. 2011. 33. P. 1727-1731.
https://doi.org/10.1016/j.optmat.2011.05.034
14. Nakamura S., Krames M. R. History of gallium-nitride-based light-emitting diodes for illumination. Proc. IEEE. 2013. 101. P. 2211-2220.
https://doi.org/10.1109/JPROC.2013.2274929
15. Chong W.C., Lau K.M. Performance enhancements of flip-chip light-emitting diodes with high-density n-type point-contacts. IEEE Electron Device Lett. 2014. 35. P. 1049-1051.
https://doi.org/10.1109/LED.2014.2349956
16. Piprek J. Energy efficiency analysis of GaN-based superluminescent diodes. 2019 Int. Conf. on Numerical Simulation of Optoelectronic Devices (NUSOD). 2019. P. 79-80.
https://doi.org/10.1109/NUSOD.2019.8807089
17. Zou Z., Wang Q., Long T. et al. FPGA-based LED display technology. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 2019. P. 2460-2463.
https://doi.org/10.1109/IAEAC47372.2019.8997982
18. Gou F., Hsiang E.-L., Tan G. et al. High-efficiency micro-LED displays with indistinguishable color shift. Advances in Display Technologies X. 11304. P. 76-83.
19. Ukida H., Miwa M., Tanimoto Y., Sano T., Yamamoto H. Visual UAV control system using LED panel and on-board camera.2013 IEEE Int. Instrumentation and Measurement Technology Conf. (I2MTC). 2013. P. 1386-1391.
https://doi.org/10.1109/I2MTC.2013.6555641
20. Bushma A.V., Turukalo A.V. Software controlling the LED bar graph displays. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2020. 23, No 3. P. 329-335.
https://doi.org/10.15407/spqeo23.03.329
21. Lishik S.I., Posedko V.S., Trofimov Yu.V., Tsvirko V.I. Current state, trends and prospectives of the development of light emitting diode technology. Light & Eng. 2017. 25. P. 13-24.
22. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. et al. Electro-optical characteristics of an innovative LED luminaire with an LED matrix cooling system based on heat pipes. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2020. 23, No 4. P. 415-423.
https://doi.org/10.15407/spqeo23.04.415
23. Nikolaenko Yu.E., Pekur D.V., Sorokin V.M. Light characteristics of high-power LED luminaire with a cooling system based on heat pipe. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2019. 22, No 3. P. 366-371.
https://doi.org/10.15407/spqeo22.03.366
24. Delendik K.I., Kolyago N.V., Penyazkov O.G., Voitik O. Development of heat pipes for cooling thermally stressed electronics elements. J. Eng. Phys. Thermophys. 2019. 92. P. 1529-1536.
https://doi.org/10.1007/s10891-019-02073-8
25. Ohno Y. Color rendering and luminous efficacy of white LED spectra. Proc. SPIE 5530, Fourth Int. Conf. on Solid State Lighting. 2004.
https://doi.org/10.1117/12.565757
26. Dutta P.S., Liotta K.M. Full spectrum white LEDs of any color temperature with color rendering index higher than 90 using a single broad-band phosphor. ECS Journal of Solid State Science and Technology. 2017. 7, No 1. P. R3194-R3198.
https://doi.org/10.1149/2.0251801jss
27. Moreno I., Ramos-Romero I.R. Light spectrum for maximum luminous efficacy of radiation and high color quality. Current Developments in Lens Design and Optical Engineering XIX. 2018. 10745. P. 1-6.
https://doi.org/10.1117/12.2322606
28. Yin Y., Wang Z., Zhu M., Zhang Y., Li J., Dou C. Full-visible-spectrum emission with high color rendering index and low correlated color temperature enabled by a single-phased phosphor of ?-Sr2V1,98P0,02O7:0.5% Eu3+. Mater. Res. Bull. 2021. 141. Art. No 111344.
https://doi.org/10.1016/j.materresbull.2021.111344
https://doi.org/10.1016/j.materresbull.2021.111344
29. Pereira D.C., Paula W.J., Tavares P.L., Rosa B.T., Silva B.H., Almeida P.S., Soares G.M., Tofoli F.L., Braga H.A.C. Analysis of a high power COB led light source driven by offline double-stage PFC converter. 2017 Brazilian Power Electronics Conference (COBEP). 2017.
https://doi.org/10.1109/COBEP.2017.8257364
30. Yurtseven M.B., Mete S., Onaygil S. The effects of temperature and driving current on the key parameters of commercially available, high-power, white LEDs. Lighting Res. Technol. 2015. 48, No 8. P. 943-965.
https://doi.org/10.1177/1477153515576785
31. Chang M.-H., Das D., Varde P.V., Pecht M. Light emitting diodes reliability review. Microelectronics Reliability. 2012. 52, Issue 5. P. 762-782.
https://doi.org/10.1016/j.microrel.2011.07.063
32. Ying S.P., Shen W.B. Thermal analysis of high-power multichip COB light-emitting diodes with different chip sizes. IEEE Trans. Electron Devices. 2015. 62, No 3. P. 896-901.
https://doi.org/10.1109/TED.2015.2390255
33. Wang J., Zhao X.-J., Cai Y.-X., Zhang C., Bao W.-W. Experimental study on the thermal management of high-power LED headlight cooling device integrated with thermoelectric cooler package. Energy Conversion and Management. 2015. 101. P. 532-540.
https://doi.org/10.1016/j.enconman.2015.05.040
34. Maaspuro M. Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs - A review. Microelectronics Reliability. 2016. 63. P. 342-353.
https://doi.org/10.1016/j.microrel.2016.06.008
35. Deng X., Luo Z., Xia Z., Gong W., Wang L. Active-passive combined and closed-loop control for the thermal management of high-power LED based on a dual synthetic jet actuator. Energy Convers. Manage. 2017. 132. P. 207-212.
https://doi.org/10.1016/j.enconman.2016.11.034
36. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. Features of wall-mounted luminaires with different types of light sources. Electrica. 2021. 21, No 1. P. 32-40.
https://doi.org/10.5152/electrica.2020.20017
37. Li J., Tian W., Lv L. A thermosyphon heat pipe cooler for high power LEDs cooling. Heat Mass Transfer. 2015. 52, No 8. P. 1541-1548.
https://doi.org/10.1007/s00231-015-1679-z
38. Patent of Ukraine ¹ 141753U. CI F21V29/00. V.M. Sorokin, D.V. Pekur, Yu.E. Nikolaenko. LED luminaire. ¹ u 2019 10273; appl. 09.10.2019; publ. 27.04.2020. Bul. No 8.
39. Nikolaenko Yu.E., Pekur D.V., Sorokin V.M. et al. Experimental study on characteristics of gravity heat pipe with threaded evaporator. Thermal Science and Engineering Progress. 26. 2021. Art. No 101107.
https://doi.org/10.1016/j.tsep.2021.101107
40. Nikolaienko Yu.E. Schematics of the architecture of heat rejection from functional modules of a computer with the help of two-phase heat-transfer devices. Upravlyayushchie Sistemy i Mashiny. 2005. 2. P. 29-36 (in Russian).
41. Jouhara H., Meskimmon R. Heat pipe based thermal management systems for energy-efficient data centers. Energy. 2014. 77. Ð. 265-270.
https://doi.org/10.1016/j.energy.2014.08.085
42. Ling L., Zhang Q., Yu Y., Liao S. A State-of-the-art review on the application of heat pipe system in data centers. Appl. Thermal Eng. 2021.
https://doi.org/10.1016/j.applthermaleng.2021.117618
43. Prisniakov K., Marchenko O., Melikaev Yu., Kravetz V., Nikolaenko Yu., Prisniakov V. About the complex influence of vibrations and gravitational fields on serviceability of heat pipes in composition of space-rocket systems. Acta Astronautica. 2004. 55, Issues 3-9. P. 509-518.
https://doi.org/10.1016/j.actaastro.2004.05.005
44. Celotti L., Solyga M., Nadalini R. et al. MASCOT thermal subsystem design challenges and solution for contrasting requirements. Proc. 45th Int. Conf. on Environmental Systems (ICES-2015-83), Bellevue, WA United States, 2015.
45. Marchenko O., Prisniakov K., Prisniakov V., Kravez V., Nikolaenko Yu. Influence of non-stationary conditions on reliability of space systems with heat pipes under the effect of vibrations. 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, International Astronautical Congress (IAF), Vancouver, British Columbia, Canada. 2004. 4. P. 2301-2311.
46. Delendik K., Kolyago N., Voitik O. Design and investigation of cooling system for high-power LED luminaire. Computers and Mathematics with Applications. 2021. 83. P. 84-94.
https://doi.org/10.1016/j.camwa.2020.01.026
47. Xiang J., Zhang C., Zhou C. et al. An integrated radial heat sink with thermosyphon for high-power LEDs applications. Heat and Mass Transfer. 2019. 55. P. 2455-2467.
https://doi.org/10.1007/s00231-019-02597-y
48. Tang H., Zhao J., Li B. et al. Thermal performance of embedded heat pipe in high power density led streetlight module. 2014 15th Int. Conf. on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE. 2014.
49. Kiyak I., Oral B., Topuz V. Smart indoor LED lighting design powered by hybrid renewable energy systems. Energy and Buildings. 2017. 148. P. 342-347.
https://doi.org/10.1016/j.enbuild.2017.05.016
50. Kornaga V.I., Pekur D.V., Kolomzarov Yu.V. et al. Intelligence system for monitoring and governing the energy efficiency of solar panels to power LED luminaires. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2021. 24, No 5. P. 200-209.
https://doi.org/10.15407/spqeo24.02.200
51. Papamichael K., Siminovitch M., Veitch J. A., Whitehead L. High color rendering can enable better vision without requiring more power. LEUKOS. 2015. 12, No. 1-2. P. 27-38.
https://doi.org/10.1080/15502724.2015.1004412
52. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. Thermal characteristics of a compact LED luminaire with a cooling system based on heat pipe. Thermal Science and Engineering Progress. 2020. 18. Art. No 100549.
https://doi.org/10.1016/j.tsep.2020.100549
53. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. Optimization of the cooling system design for a compact high-power LED luminaire. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2020. 23, No. 1. P. 91-101.
https://doi.org/10.15407/spqeo23.01.091
54. Ñree Inc. https://cree-led.com/media/documents/ds-CMA2550.pdf (reference date: 08.09.21).
55. Luo D., Wang L., Or S.W., Zhang H., Xie R.-J. Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors. 2017. RSC Adv. 7, No 42. P. 25964-25968.
https://doi.org/10.1039/C7RA04614F
56. LED ColorCalculator. Version 7.15. OSRAM SYLVANIA, Massachusetts, https://www.osram.us/cb/tools-and-resources/applications/led-colorcalculator/index.jsp (reference date: 08.09.21).
| |
|
|