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1. Introduction 

The problem of interaction between fast charged particles 

and dielectric or semiconducting media is of particular 

interest for both fundamental standpoint and various 

applications. The fundamental aspects of the problem are 

related, for example, to the mechanisms of different type 

excitations in the medium, energy losses of the particles, 

etc. Applications of the problem include scanning electron 

microscopy using high-quality electron beams [1–4], 

cathode luminescence effects [5–8], terahertz radiation 

from plasmon-polaritons excited by electrons [9–12], 

surface-plasmon resonance sensors [13–16], solid state 

charge particle detectors [17–19] and others [20–22]. An 

important application of our results can be found in 

betavoltaics [23–26]. In this technology, high-energy 

electrons pass through a dielectric media providing 

generation of electron-hole pairs, separation of which in p-

n junctions gives rise to the voltaic effect. Energy cells 

based on this principle can be used in a number of 

applications [15–18]. 

In general, interaction of a charged particle with a 

media depends on atoms/ions composing the media and its 

particular structure. However, there exist examples for 

which this detailed knowledge is not necessary – instead a 

macroscopic continuous medium approach is applicable. 

Indeed, the moving charged particle induces time- and 

space-dependent electrostatic potential. At a distance r 

from the particle trajectory, the main contribution to this 

potential comes with the frequency of the order of  

r

v0 , where v0 is the speed of the moving particle. 

Thus, electrically active excitations with low frequencies 

(and energies approximately equal to 
r

v0
), if they exist, 

can be produced at macroscopically large distances r (r 

>> a0, with a0 being a lattice constant).  

These low energy excitations can be analyzed by 

using a macroscopic continuum media approach. This 

approach does not account for the impact of the lattice 

defects or separate atoms. It can be justified by the fact 

that we find and check some “characteristic length and 

frequency scales” in the process of our calculations. The 

scales are dependent on the speed of the charged particle. 

Thus, implying a condition that the characteristic scale is 

considerably higher than the lattice constant, we obtain the 

lower limit of the particle speed: 

smav gap
5

0 1067.1 = .     (1) 

It means that the initial energy of the particle needs to be 

high enough. In this case, the considered charge carrier is 

not influenced by the individual features of media, which 

can be treated macroscopically in the frame of frequency-

dependent dielectric permittivity. In this work, two models 

of electrical excitations have been studied.  
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For interband excitations induced by the fast 

electrons (e.g., cathode luminescence), we used the 

permittivity dispersion ε(ω) accounting transitions 

between electron energetic bands in a semiconductor 

media [12]: 

( )( )−−++−


+= 1112
20

A
,  (2a) 

( )−−


=  11
2

A
.    (2b) 

Here, ε' is the real part and ε'' – imaginary one of the 

dielectric permittivity, A – oscillator force, and 
gapE


=


 

– dimensionless frequency, Egap – energy band gap, θ – 

Heaviside step function, ε0 – material constant.  

For consideration of a polar material at the excitation 

of optical phonons, we consider the permittivity in the 

form [27]: 

−−

−−
= 

і

і

to

lo
phon

2

2
22

22

,    (3) 

where χ∞ is the static permittivity of the media, and ωlo, ωto 

are the frequencies of the longitudinal and transverse 

phonons, respectively [12]. The parameter γ is the decay 

factor. The excitation of the polar medium can be 

characterized by the induced polarization P that is related 

to the dielectric displacement D and the electric field E of 

the moving charge by the formula  

PED


+= 4 .      (4) 

2. Basic assumptions and equations 

At first, we consider a particle with a charge q moving 

with a speed v in a medium with the dispersion law of the 

dielectric permittivity defined by Eq. (2). The speed v is 

assumed to be high, but sufficiently smaller than the speed 

of light (nonrelativistic case), then we neglect magnetic 

fields around the moving charge particle and use 

electrostatic equations. In the first approximation the 

particle speed is considered to be constant (i.e., excited 

medium does not affect the particle motion), this allows 

determining the electrical potential, the electric fields and 

the energy losses of the particle. Then, using the obtained 

energy losses we can write an approximate differential 

equation of particle deceleration. From this equation, we 

determined the dependence of the particle speed on the 

coordinate along its motion. Because there are no 

magnetic fields, we use the Maxwell equation for the 

electric displacement in the differential form. Due to the 

frequency dispersion of media, we need to use the 

response convolution function [Помилка! Закладку не 

визначено.]. By doing that, it becomes possible to link 

the electric field and the displacement. So, the equations 

are as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( )







−=

−=


−

0

,,,,,,

4div

dtzyxEttzyxD

zyvtxqD





.    (5) 

In Eq. (5), the charge density of the moving particle of 

infinitesimal size is written by means of the Dirac delta-

function. To make further calculations easier, we have 

made a Fourier transform on time, and transfer to the 

Poisson equation for the scalar potential. It is possible to 

do because 0rot =E


. So, let us write the electric potential 

in the form: 

( )
( )

( ) ( )zye
v

q
r v

x
і





−=

+4
,


.   (6a) 

The Fourier image of Eq. (5) can be solved using the 

Green function, and the general solution for the image of 

the potential is: 

( ) ( ) ( ) zdydxdzye
v

zzyyxxG v

x
i ~~~~~1~,,~,,~, =


+

−

  . (6b) 

The boundary conditions for Eq. (5) are that the 

displacement or the potential decay to zero at infinity, and 

the Green function ( )zzyyxxG ~,,~,,~,  satisfies them. 

3. Infinite medium case 

3.1. The calculation of the electric potential 

We imply that the formula (6b) leads to the following form 

of the electric potential: 

( ) ( )
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The following designations are used in Eq. (7a): 
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And the dimensionless frequency 

gapE


=


.     (8a) 

The dimensionless coordinates: 

l

vtx
x

−
= ,   

l

y
y = ,  

l

z
z = , 22 zyr += . (8b) 
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Fig. 1. The dependences of induced potential versus longitudinal 

coordinate x' for various radial distances r'. 

 

 

The characteristic length and frequency: 

gap

v
l


= , 


gap

gap

E
= ,    (8c) 


gapE

v

q
B


= .     (8d) 

The dependence of the induced potential (7) on the 

coordinates (8b) along the direction of the particle motion 

is shown in Fig. 1. As one can see from the figure, the 

potential oscillates for the negative values of the 

coordinate x'. The inset shows this behavior in more 

details. The contour map of the potential in coordinates 

{r', x'} is presented in Fig. 2. Since the system is axially-

symmetric, the radius-vector lies along the ordinate axis 

normal to the electron motion. The parameters used in 

these calculations are shown in Table 1 below. 

The obtained electric potential is sign-alternating. It 

oscillates for the negative values of the longitudinal 

coordinate and decays to zero in front of the particle. So, 

if one considers an electron beam in the same medium as 

a single particle, the property of the potential can lead to 

some peculiar effects in the beam. Namely, the density of 

the electrons in the beam can oscillate as well. There will 

be regions with increased and decreased density. The 

charged particles can gather in groups due to this effect. 

Our study cannot prove this mathematically, but there is a 

high probability that further studies will achieve this 

result.  

Let us consider an electron beam with particles far 

enough from each other not to disturb their “neighbors” by 

own electric field. As one can see from Fig. 2, this distance  

must  be  not  less than ten characteristic lengths  
 
 

Table 1. The parameters of the media, which are used in our 

evaluations [28, 29]. 

Oscillator force 

A 

Material 

constant ε0 

Band gap frequency 

ωgap 

2.6 16 3·1015 Hz 

The material corresponding to these constants is InSb. 

(Eq. (8c)). If electrons are distributed denser than this 

distance, their fields can affect their closest neighbors, and 

the effect of the density oscillation will occur. 

As one can see from Fig. 1, the period of the electric 

potential oscillations is approximately six characteristic 

distances. We can say that if two electrons are situated 

closer than this distance, they influence each other. Thus, 

some correlations of the density in the electron beam can 

occur. This means that if electron is located in a cube with 

the edge longer than the length of six characteristic 

distances, the density oscillations will not occur. Because 

in this case, electrons will not influence each other. So, we 

suggest a way of calculating the current density of a 

hypothetic beam, in which the electron correlations are 

still absent: 

nvej 0= .     (9a) 

The concentration n can be estimated as one electron 

per approximately 103l3 volume. So, the current density 

can be written as follows 

2
0

3

3

10 v

e
j

gap
−= .     (9a) 

3.2. The energy losses and the coordinate dependence 

of the particle speed 

Let us find the energy losses in the media. To do that, we 

need to evaluate the field as the gradient of potential (7) 

and the electric displacement as the response integral. 

Having the expressions for them, we will be able to find 

the energy. So, we can write the following formula, being 

based on Ref. [30, page 306, formula (56.15)]: 

dV
t

D
E

dx

d

V 




−=







4

1
.    (10) 

 

 
 

Fig. 2. The contour map of the electric potential defined by 

Eq. (7). The system is axially-symmetric, so on the ordinate axis 

the value of the radius-vector normal to the motion of electron, 

is shown. The orange arrow shows the direction of the electron 

movement.  
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Fig. 3. The dependence of the energy losses per unit length 

on the cut-off parameter a. 

 

 

These are the energy losses of the particle in a unit time 

(or the “power” of the losses). Hence, the particle energy 

losses per unit length can be written as: 

dzdydt
dx

d
Q 

+

−



−

=


,    (11) 

where E
t

D
Q









−=

4

1
. The spatial density of the energy 

losses can be rewritten as follows: 

( ) ( ) ( )
+



+

 =
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−=

0

2

0

24

1
ddE


. (12) 

If we substitute the expression for ( )E


 into 

Eq. (12), we obtain the expression for the spatial density 

of the energy losses per unit frequency interval (the 

spectral density), ( ) : 

( )
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.

4

1 2
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2
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
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
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 
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v
rK

v
rK

v

q
(13) 

In the expression (13), 22 zyr +=⊥  is the distance 

from the particle trajectory in the plane perpendicular to 

this trajectory. In the total energy losses, Eq. (11), the 

integrand given by Eq. (13) diverges at r⊥ → 0. To get a 

final value of the integral, we perform the integration 

starting not from r⊥ = 0, but from a small distance a. 

Below, we shall check it for the cut-off parameter a of the 

order of a few lattice constants, which is natural minimal 

distance of lattice atoms to the particle, the integral (11) is 

almost independent of a. It is shown in Fig. 3. We see that 

the integral term decreases with the increase of a, as a 

logarithmic function. For actual values of a above a few 

lattice constants (5…10) Å, the integral changes very 

little. It proves the validity of the integral cut-off 

procedure.  

We can equate the change of the kinetic energy 

2

2v
mT =  of the particle to the energy loss given by 

Eq. (11) and find the derivative of the particle velocity 

with respect to the coordinate x: 

dx

dE

dx

dv
mvT

dx

d
== .    (14) 

Here, v is the speed of the particle. Now, the latter can be 

rewritten as 

I
v

q

A

a

x
gap
44

0

22

4 
−=




.    (15) 

Where we introduced the following parameter  

( ) ( ) ( ) 
( ) ( )


+−+++−+
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1442122
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            (16a) 

with 153.60 =


=
A

.               (16b) 

The latter value was obtained using the parameters 

from Table 1. Then, we can solve the differential equation 

(14) and find the particle speed: 

6
1

max
0 1 








−=

x

x
vv .               (17a) 

Here, v0 is the initial speed of the particle. This result 

shows that the particle decelerates and stops after 

travelling the distance given by the expression 

6
022

4

max
3

2
v

Іqa

mA
x

gap
= .               (17b) 

All of these transformations and deliberations are 

possible only if characteristic frequency is significantly 

higher than the frequency of the interband transition: 

gap
a

v
0 , smav gap

5
0 1067.1 = .              (17c) 

So, we can write that
Іq

maA
x

gap

2

104

max
3

2 
 . The 

schematic graphical form of the expression (17a) is shown 

in Fig. 4. 
 

 

 
Fig. 4. The dependence of the particle speed on the coordinate x' 

along its motion.  
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The result adduced in Fig. 4 shows that a charged particle 

in the vicinity of a dispersive media slows down and 

eventually stops. The formula (17a) shows an approximate 

expression for the maximal distance of the particle motion. 

The speed is quasi-linear at first, then it rapidly decreases 

(see the dashed part on the graph). Our calculations can be 

considered trustworthy for the solid part of the curve, 

because of the condition (17c) on the value of the speed. 

The values of the speed represented by the dashed curve 

decrease rather sharply from the initial value, thus they 

violate the condition (17c). 

 

3.3. The carrier generation rate evaluation 

Let us, knowing the losses density given by expression 

(13), evaluate the number of the charge carriers generated 

in a unit space per unit time. To be more precise, we need 

to know how many interband transitions one electron 

could cause with the energy it loses in the medium. We 

will consider such a transition with an energy equal to ħωt . 

We can write the following expressions: 

( ) ( )tttgenn
dt

d
−=  .    (18) 

Here, ngen is the concentration (a number per unit volume) 

of the interband transitions, ωt – transition frequency. The 

equation (18) stems from the energy conservation law. 

Since the frequency ωt can have different values in the 

considered case, we need to integrate Eq. (18) over ħωt . 

The result for the generation rate G can be written as 

follows: 
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After conversion of the integral in (19a) to 

dimensionless parameters, we obtain the following 

expression: 

( ) ( )

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1

,
~,~ drGrG avav .               (19b) 

Here, the generation rate energy density can be written in 

the following way: 
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In Eq. (19c) 
gap

pair




= , and pair  is the energy of the 

generated electron-hole pair. The dimensionless radius- 

 

 
 

Fig. 5. The dependence of the generation rate dispersion 

( )⊥  rGav
~,,  on the dimensionless frequency χ for various 

distances from the charge motion line, which are listed in the 

legend. 
 

 

vector absolute value is 
l

r
r ⊥
⊥ =~ . To illustrate the 

analytical expression (19b), a graphical image of the 

dependence of the generation rate dispersion ( )⊥  rGav
~,,  

on the dimensionless frequency χ is shown below in Fig. 5. 

As one can see from Fig. 5, the dispersion of the 

generation rate is significantly high for the transition 

energy close to the band-gap width. For much higher 

energies, it is insignificant. This can be interpreted as the 

fact that the moving charge carrier generates only low-

energy transitions. So, the macroscopic continuous 

medium approach is correct, because, as we can see from 

the figure, the mean energy of the generated transitions is 

very low. And, naturally, the speed increases with the 

decrease of the radius-vector absolute value.  

Note that the generation rate and the distance of 

electron penetration for the so-called betavoltaics (which 

is discussed in Refs [31–33]) is critically important, 

because of the use of fast electrons with energies around 

100 keV.  

4. A charged particle near a dielectric with optical 

phonons/vacuum boundary 

4.1. Problem statement 

Let us consider a charged particle moving at a fixed 

distance from the boundary between two media. One of 

them is a dielectric without dispersion, another is a 

dielectric with optical phonon dispersion. The speed of the 

particle is regarded constant. The schematic view of the 

considered system is shown in Fig. 6. 

The permittivities of the media “1” and “2” are: 

11 = ,  
−−

−−
= 

і

і

to

lo

2

2
22

22

2 .   (20) 

Let us find the potential, the electric field in both of 

the media, and the induction. The equations are considered 

to be the same as (5), with the following boundary 

conditions: 



SPQEO, 2022. V. 25, No 1. P. 010-018. 

Yelisieiev M.E. The free path and generation rate of fast-moving electron interacting with dielectric media 

015 

 
 

Fig. 6. A particle with a constant charge q and speed v, which 

moves along the boundary of two dielectrics at the distance d 

from it. 
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Next, we make the Fourier transform on time and the 

x coordinate, and a transition to the scalar electrostatic 

potential, because ( ) 0rot =E


. As a result, we obtain the 

following equations with boundary conditions: 
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4.2. The electric potential and the field 

The solution of Eqs. (22) was found by means of the Green 

function and has the form: 
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Eq. (23) is written for y > 0, in the upper half-space. 

In the lower half-space (for y < 0), the potential has the 

form: 
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In Eqs (23) and (24), the following dimensionless 

factors were used: 
 

Table 2. The values of dimensionless parameters, which are used 

in our calculations. 

~  lo~  to~  d   

0.01 1.2 1 10–4 2.56 

Note. The material corresponding to these constants is GaAs. 
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In Eqs (23)–(25), the following dimensionless 

parameters were introduced: 
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The coordinate dependences of the potential 

represented by Eqs. (23) and (24) are shown in Fig. 7. The 

curves were plotted for the parameters listed in Table 2.  

 

 

 

  
Fig. 7. The dependence of the electrostatic potential on the 

dimensionless coordinate x' for fixed z' and different y' (different 

solid and dashed curves). The solid curves correspond to the 

upper half-space, the dashed curves – to the lower one of the 

system. The inset shows oscillations of the potential in more 

details. 
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The electric potential oscillates for the positive 

values of the dimensionless coordinate, as it is shown in 

the inset of Fig. 7. For the negative values, it oscillates as 

well. So, the changes of density in the electron beam will 

occur in this case as well. These oscillations occur for 

molecules as well, as it is shown in [34]. 

From the expressions (23) and (24), one can obtain 

the formulas for the electric field and the polarization in 

the medium. They are shown below: 
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The x-component of polarization can be written as 

follows: 
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Here, the imaginary ( )  ~  and the real ( ) ~  parts of the 

permittivity are derived from Eq. (3). Let us analyze a 

contour plot of the longitudinal (to the motion of the 

particle) component of the polarization given by Eq. (28), 
 

 

and the field defined by Eq. (27). They are shown in 

Figs 8a and 8b, respectively. 

As one can see, electron induces two regions with a 

significant value of the polarization – one five 

characteristic distances behind it, and one right in front of 

it. The field has a similar structure – two regions with 

significant in value and opposite in sign x-components, 

one two characteristic distances in front, other two of them 

behind. If we consider an electron beam in these 

conditions, we will find that the minimal critical 

concentration corresponding to the density correlations is 

equal to 
335

1

d
. 

5. Conclusions 

In this work, we have considered interaction of a fast-

moving charged particle with low-energy electrically 

active excitations of a dielectric/semiconducting medium. 

The long-range character of the potential induced by the 

charged particle facilitates analysis of the low-energy 

excitations by applying the macroscopic description of 

dielectric/semiconducting medium. This macroscopic 

description can be based on characterization of the 

medium by a dielectric permittivity. Frequency depen-

dence of the dielectric permittivity represents low-energy 

and electrically active excitations of analyzed medium.  

Two particular types of the low-energy excitations 

have been studied: (i) interband excitations in a 

semiconductor, (ii) optical phonon excitations in a polar 

dielectric. Then, we have considered a charged particle 

moving through an infinite medium, and one moving near 

the boundary of two dielectric media. We found that for 

every excitation type and geometry the electric potential 

induced by the particle, as well as the medium 

polarization, oscillates with the coordinate along the 

particle trajectory. Excitations of the medium give rise to 

energy losses of the moving particle and its deceleration. 

We have found the approximate coordinate dependence of 

the particle speed and its path length. We have determined 

 

Fig. 8. (a) The space distribution of x-component for the polarization in the dispersive media (28a). (b) The space distribution of the 

electric field. The black arrow shows the trajectory of the charged particle, the point – its position.  
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the spatial patterns of the induced potential, generation 

rate of the electron-hole pairs under interband excitation 

and polarization of polar medium.  

For the excitation type (i), we have found an 

analytical formula for the spectral density of the 

generation rate for electron-hole pairs induced by the fast-

moving charged particle. We have proved that the spectral 

density has significant amplitude only for the frequencies 

close to the bandgap and rapidly increases in the vicinity 

of the charge trajectory. 

For the excitation type (ii), we found that the moving 

charged particle creates complex patterns of the electric 

field and polarization: two regions attendant the particle 

have significant amplitudes of the field and the 

polarization, signs of the field and the polarization are 

opposite in these regions. The moving patterns of the 

polarization induce complex lattice vibrations in the 

particle trace.  

We suggest that the obtained results can contribute to 

deeper understanding of physics of interaction between 

moving charged particles and dielectric/semiconducting 

media, as well as may be useful for numerous devices and 

technologies using charged beam-medium interaction [11, 

13]. 
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Вільний пробіг та темп генерації швидкого електрона, що взаємодіє з діелектричним середовищем 

М.Є. Єлісєєв  

Анотація. У рамках підходу макроскопічного неперервного середовища досліджено взаємодію між швидкою 

зарядженою частинкою та діелектричним або напівпровідниковим середовищем з низькоенергетичними 

електронно-активними збудженнями. Ці збудження є причиною частотної дисперсії діелектричної проникності 

середовища. Розглянуто два типи процесів, викликаних рухомою зарядженою частинкою: генерація електронно-

діркових пар при міжзонних переходах та збудження полярних оптичних фононів. Для обох процесів ми 

розрахували та проаналізували залежність від часу та простору електричного потенціалу, який генерує 

заряджена частинка, поляризацію середовища, втрати енергії частинкою та інші важливі параметри моделей 

взаємодії. Отримані результати можуть сприяти глибшому розумінню взаємодії пучків заряджених частинок з 

напівпровідниковим середовищем, а також можуть бути корисними для різноманітних практичних застосувань 

заряджених пучків. 

Ключові слова: шлях вільного пробігу, генерація електронно-діркових пар, оптичні фонони, міжзонні 

переходи, електронні пучки. 

https://www.nature.com/articles/s41598-019-47371-6
https://doi.org/10.1016/j.cocom.2018
http://orcid.org/0000-0001-8793-302X?lang=en

