Semiconductor Physics, Quantum Electronics & Optoelectronics, 26 (1), P. 036-040 (2023).
DOI: https://doi.org/10.15407/spqeo26.01.036


References

1. Batten S.R., Neville S.M., Turner D.R. Coordination Polymers: Design, Analysis and Application. Royal Society of Chemistry. Cambridge, 2008.

2. Biradha K., Ramanan A., Vittal J.J. Coordination polymers versus metal-organic frameworks. Cryst. Growth Des. 2009. 9. P. 2969–2970. https://doi.org/10.1021/cg801381p .

3. Morritt G.H., Michaels H., and Freitag M. Coordination polymers for emerging molecular devices. Chem. Phys. Rev. 2022. 3. P. 011306. https://aip.scitation.org/doi/10.1063/5.0075283 .

4. Yang D., Sasaki N., Shimada T. et al. Multistep molecular and macromolecular assembly for the creation of complex nanostructures. Chem. Phys. Rev. 2022. 3. P. 021305. https://doi.org/10.1063/5.0079750 .

5. Tran M., Kline K., Qin Y. et al. 2D coordination polymers: Design guidelines and materials perspective. Appl. Phys. Rev. 2019. 6. P. 041311. https://doi.org/10.1063/1.5110895 .

6. Zhang W., Ye G., Liao D. et al. Recent advances of silver-based coordination polymers on antibacterial applications. Molecules. 2022. 27. P. 7166. https://doi.org/10.3390/molecules27217166 .

7. Engel E.R., Scott J.L. Advances in the green chemistry of coordination polymer materials. Green Chem. 2020. 22, No 12. P. 3693. https://doi.org/10.1039/D0GC01074J .

8. Gagnon K.J., Perry H.P., Clear?eld A. Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev. 2012. 112. P. 1034. https://doi.org/10.1021/cr2002257 .

9. Koprowski M., Owsianik K., Knopik L. et al. Comprehensive review on synthesis, properties, and applications of phosphorus (PIII, PIV, PV) substituted acenes with more than two fused benzene rings. Molecules. 2022. 27. P. 6611. https://doi.org/10.3390/molecules27196611 .

10. Pazderova M., Benesova J., Havlickova M., et al. Cyclam with a phosphinate-bis(phosphonate) pendant arm is a bone-targeting carrier of copper radionuclides. Dalton Transactions. 2022. 51. P. 9451–9555. https://doi.org/10.1039/d2dt01172 .

11. Balabai R., Solomenko A. Flexible 2D layered material junctions. Appl. Nanosci. 2019. 9, No 5. P. 1011. https://doi.org/10.1007/s13204-018-0709-9 .

12. Balabai R., Kravtsova D., Merzlykin P., Prihozhaya Y. Electronic, dielectric, and optical properties of photonic crystals composed of TiO2 nanoparticles three-dimensional arrays: the first principles calculations. J. Nanophoton. 2018. 12, No 3. P. 036003. https://doi.org/10.1117/1.JNP.12.036003 .

13. Balabai R.M., Solomenko À.G., Radchenko T.M., Tatarenko V.A. Functionalization of quasi-two-dimensional materials: Chemical and strain-induced modifications. Prog. Phys. Met. 2022. 23, No 2. P. 147. https://doi.org/10.15407/ufm.23.02.147 .

14. Balabai R., Bondarenko O., Naumenko M. Energy levels of acceptor impurities in ?-Ga2O3 nano-structures. Mater. Today: Proc. 2022. 62, Part 9. P. 5838–5844. https://doi.org/10.1016/j.matpr.2022.05.365 .

15. Gonzalez L., Mo O., Yanez M., Elguero J. Very strong hydrogen bonds in neutral molecules: The phosphinic acid dimmers. J. Chem. Phys. 1998. 109. P. 2685. https://doi.org/10.1063/1.476868 .

16. Kananenka A.A., Skinner J.L. Unusually strong hydrogen bond cooperativity in particular (H2O) 20 clusters. Phys. Chem. Chem. Phys. 2020. 22. P. 18124–18131. https://doi.org/10.1039/D0CP02343D .