Semiconductor Physics, Quantum Electronics & Optoelectronics, 26 (1), P. 041-048 (2023).
DOI: https://doi.org/10.15407/spqeo26.01.041
References
1. Uyor U.O., Popoola P.A., Popoola O.M., Aigbodion V.S. A review of recent advances on the properties of polypropylene – carbon nanotubes composites. Journal of Thermoplastic Composite Materials. 2022. 0. P. 1–34. https://doi.org/10.1177/08927057221077868 .
2. Dolgov L., Koval’chuk O., Lebovka N. et al. Liquid crystal dispersions of carbon nanotubes: Dielectric, electro-optical and structural peculiarities in carbon nanotubes. In: Carbon Nanotubes. J.M. Marulanda (Ed.), 2010. https://doi.org/10.5772/39439 .
3. Okolo C., Rafique R., Iqbal S.S. et al. Carbon nanotube reinforced high density polyethylene materials for offshore sheathing applications. Molecules. 2020. 25. P. 2960. https://doi.org/10.3390/molecules25132960 .
4. Aalaie J., Rahmatpour A., Maghami S. Preparation and characterization of linear low density polyethylene/carbon nanotube nanocomposites. J. Macromol. Sci. Phys. 2007. 46. P. 877–889. https://doi.org/10.1080/00222340701389100 .
5. Liang G.D., Tjong S.C. Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Mater. Chem. Phys. 2006. 100. P. 132–137. https://doi.org/10.1016/j.matchemphys.2005.12.021 .
6. Georgousis G., Charitos I., Kontou E. et al. Ther-momechanical-electrical properties and microme-chanics modeling of linear low density polyethylene reinforced with multi-walled carbon nanotubes. Polymer composites. 2018. 39. No S2. P. E1118–E1128. https://doi.org/10.1002/pc.24584 .
7. Dassan E.G.B., Ab Rahman A.A., Abidin M.S.Z., Akil H.Md. Carbon nanotube – reinforced polymer composite for electromagnetic interference application: A review. Nanotechnology Reviews. 2020. 9, No 1. P. 768–788. https://doi.org/10.1515/ntrev-2020-0064 .
8. Luo Y., Xie Y., Chen R. et al. A low-density polyethylene composite with phosphorus nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy. Front. Chem. Sci. Eng. 2021. 15, No 5. P. 1332–1345. https://doi.org/10.1007/s11705-021-2035-0 .
9. Poberezhets S.I., Kovalchuk O.V., Savchenko B.M. et al. Dynamics of the conductance temperature dependence for composite based on linear polyethylene with impurity of soot and calcite. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2019. 22, No 3. P. 285–292. https://doi.org/10.15407/spqeo22.03.285 .
10. Twarowski A.J., Albrecht A.C. Depletion layer inorganic films: Low frequency measurements in polycrystalline tetracene. J. Chem. Phys. 1979. 70, No 5. P. 2255–2261. https://doi.org/10.1063/1.437729 .
11. Konopelnyk Î.²., Aksimentyeva Î.²., Horbenko Yu.Yu. Temperature dependence of conductivity inconjugated polymers doped by carbon nanotubes. Journal of Nano- and Electronic Physics. 2017. 9, No 5. P. 05011. https://doi.org/10.21272/jnep.9(5).05011 .
12. Kuryptya Ya.A., Savchenko B.M., Kovalchuk O.V. et al. Peculiarities of near-electrode relaxation processes in the polyethylene melt filled with graphite and carbon black. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2016. 19, No 3. P. 290–294. https://doi.org/10.15407/spqeo19.03.290 .
| |
|
|