Semiconductor Physics, Quantum Electronics & Optoelectronics, 26 (1), P. 059-067 (2023).
DOI: https://doi.org/10.15407/spqeo26.01.059


References

1. Rogalin V.E., Kaplunov I.A., Kropotov G.I. Optical materials for the THz range. Opt. Spectrosc. 2018. 125. P. 1053–1064. https://doi.org/10.1134/S0030400X18120172 .

2. Llombart N., Lee C., Alonso-delPino M. et al. Silicon micromachined lens antenna for THz integrated heterodyne arrays. IEEE Trans. Terahertz Sci. Technol. 2013. 3, No 5. P. 515–523. https://doi.org/10.1109/TTHZ.2013.2270300 .

3. Llombart N., Chattopadhyay G., Skalare A., Mehdi I. Novel terahertz antenna based on a silicon lens fed by a leaky wave enhanced waveguide. IEEE Trans. Antennas Propag. 2011. 59, No 6. P. 2160–2168. https://doi.org/10.1109/TAP.2011.2143663 .

4. Alonso-DelPino M., Llombart N., Chattopadhyay G. et al. Design guidelines for a terahertz silicon micro-lens antenna. IEEE Antennas Wirel. Propag. Lett. 2013. 12. P. 84–87. https://doi.org/10.1109/lawp.2013.2240252 .

5. Rosen D., Suzuki A., Keating B. et al. Epoxy-based broadband antireflection coating for millimeter-wave optics. Appl. Opt. 2013. 52, No 33. P. 8102. https://doi.org/10.1364/ao.52.008102 .

6. Wheeler J.D., Koopman B., Gallardo P. et al. Antireflection coatings for submillimeter silicon lenses. Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. 2014. Proc. SPIE. 9153. P. 91532Z-1. https://doi.org/10.1117/12.2057011 .

7. Datta R., Munson C.D., Niemack M.D. et al. Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths. Appl. Opt. 2013. 52. No 36. P. 8747–8758. https://doi.org/10.1364/ao.52.008747 .

8. Ozbey B., Sertel K. Effects of internal reflections on the performance of lens-integrated mmW and THz antennas. 2018 International Applied Computational Electromagnetics Society Symposium (ACES), Denver, CO, USA, 2018. https://doi.org/10.23919/ROPACES.2018.8364149 .

9. Hass G., and Thun R.E. (Eds.) Physics of Thin Films: Advances in Research and Development. New York and London: Academic Press N.Y. 1966. 3. P. 1–40. .

10. Jin Y.-S., Kim G.-Ju, Jeon S.-G. Terahertz dielectric properties of polymers. J. Korean Phys. Soc. 2006. 49, No 2. P. 513–517. .

11. Sahin S., Nahar N., Sertel K. Thin-film SUEX as an anti-reflection coating for mmW and THz applications. IEEE Trans. Terahertz Sci. Technol. 2019. 9, No 4. P. 417–421. https://doi.org/10.1109/TTHZ.2019.2915672 .

12. Gatesman A., Waldman J., Ji M., Musante C., and Yagvesson S. An antireflection coating for silicon optics at terahertz frequencies. IEEE Microwave Guided Wave Lett. 2000. 10. P. 264–266. https://doi.org/10.1109/75.856983 .

13. Cunningham P., Valdes N., Vallejo F. et al. Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. J. Appl. Phys. 2011. 109, No 4. P. 043505. https://doi.org/10.1063/1.3549120 .

14. Defrance F., Jung-Kubiak C., Sayers J. et al. 1.6:1 bandwidth two-layer antireflection structure for silicon matched to the 190–310 GHz atmospheric window. Appl. Opt. 2018. 57, No 18. P. 5196–5209. https://doi.org/10.1364/AO.57.005196 .

15. Manaf A., Sugiyama T., Yan J. Design and fabrica-tion of Si-HDPE hybrid Fresnel lenses for infrared imaging systems. Opt. Exp. 2017. 25, No 2. 1202–1220. https://doi.org/10.1364/OE.25.001202 .

16. Englert C.R., Birk M., Maurer H. Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared. IEEE Trans. Geosci. Remote Sensing. 1999. 37, No 4. P. 1997–2003. https://doi.org/10.1109/36.774710. .

17. https://scipoly.com/technical-library/refractive-index-of-polymers-by-index/s .

18. Bauer G. Absolutwerte der optischen Absorptions-konstanten von Alkalihalogenidkristallen im Gebiet ihrer ultravioletten Eigenfrequenzen. Annalen der Physik. 1934. 411, No 4. P. 434–464. https://doi.org/10.1002/andp.19344110405 .

19. Heavens E.S. Optical Properties of Thin Solid Films. London: Butterworths, 1955. .

20. Abeles F. Recherches sur la propagation des ondes electromagnetiques sinusoidales dans les milieux stratifies. Ann. Phys. 1950. 12. P. 596–640. https://doi.org/10.1051/anphys/195012050706 .

21. Gatesman A.J., Giles R.H., Waldman J. High-precision reflectometer for submillimeter wave-lengths. J. Opt. Soc. Am. 1995. 12, No 2. P. 212–219. https://doi.org/10.1364/JOSAB.12.000212 .

22. Golenkov A.G., Shevchik-Shekera A.V., Kovbasa M.Yu. et al. THz linear array scanner in application to the real-time imaging and convolutional neural network recognition. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2021. 24, No 1. P. 90–99. https://doi.org/10.15407/spqeo24.01.090 .

23. Sizov F.F., Tsybrii Z.F., Zabudsky V.V. et al. Detection of IR and sub/THz radiation using MCT thin layer structures: design of the chip, optical elements and antenna pattern. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. 19, No 2. P. 149–155. https://doi.org/10.15407/spqeo19.02.149 .

24. Hargrave P.C., Savini G. Anti-reflection coating of large-format lenses for sub-mm applications. Proc. SPIE. 7741. Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy. 2010. P. 7741OS. https://doi.org/10.1117/12.856919 .