Semiconductor Physics, Quantum Electronics & Optoelectronics, 26 (1), P. 068-075 (2023).
DOI: https://doi.org/10.15407/spqeo26.01.068
References
1. Canham L. Introductory lecture: origins and applications of efficient visible photoluminescence from silicon-based nanostructures. Faraday Discuss. 2020. 222. P. 10–81. https://doi.org/10.1039/D0FD00018C .
2. Pavesi L. Thirty years in silicon photonics: A personal view. Front. Phys. 2021. 9. P. 786028. https://doi.org/10.3389/fphy.2021.786028 .
3. Silicon Nanophotonics: Basic Principles, Present Status, and Perspectives. Second Edition. Ed. L. Khriachtchev. Pan Stanford Publishing, 2016. .
4. Mazzaro R., Romano F., and Ceroni P. Long-lived luminescence of silicon nanocrystals: From principles to applications. Phys. Chem. Chem. Phys. 2017. 19, No 39. P. 26507–26526. https://doi.org/10.1039/C7CP05208A .
5. Yuan Z., Anopchenko A., Pavesi L. Innovative quantum effects in silicon for photovoltaic applications. Ch. 10 in: Advanced Silicon Materials for Photovoltaic Applications. Ed. S. Pizzini. John Wiley & Sons, 2012. P. 355–391. .
6. Sopinskyy M., Khomchenko V. Electroluminescence in SiOx films and SiOx film-based systems. Curr. Opin. Solid State Mater. Sci. 2003. 7, No 2. P. 97–109. https://doi.org/10.1016/S1359-0286(03)00048-2 .
7. Pacifici D., Franzo G., Priollo F., Iacona F., and Dal Negro L. Modeling and perspectives of the Si nanocrystals–Er interaction for optical amplifica-tion. Phys. Rev. B. 2003. 67, No 24. P. 245301. https://doi.org/10.1103/PhysRevB.67.245301 .
8. Pacifici D., Irrera A., Franzo G. et al. Erbium-doped Si nanocrystals: Optical properties and electrolumi-nescent devices. Physica E. 2003. 16, No 3–4. P. 331–340. https://doi.org/10.1016/S1386-9477(02)00615-X .
9. Khomchenko V.S., Berejinskij L.I., and Sopinskyy M.V. On the correlation character between the structure perfection and electroluminescent properties of terbium doped silicon monoxide films. Physica B. 2001. 308–310. P. 268–271. https://doi.org/10.1016/S0921-4526(01)00791-8 .
10. Kaleli B., Kulakci M., Turan R. Mechanisms of light emission from terbium ions (Tb3+) embedded in a Si rich silicon oxide matrix. Opt. Mater. 2012. 34, No 11. P. 1935–1939. https://doi.org/10.1016/j.optmat.2012.05.036 .
11. Kulakci M., Turan R. Improvement of light emis-sion from Tb-doped Si-based MOS-LED using excess Si in the oxide layer. J. Lumin. 2013. 137. P. 37–42. https://doi.org/10.1016/j.jlumin.2012.11.005 .
12. Podhorodecki A., Golacki L.W., Zatryb G. et al. Excitation mechanism and thermal emission quen-ching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition – Do we need silicon nanoclusters? J. Appl. Phys. 2014. 115, No 14. Art. 143510 (10 p.). https://doi.org/10.1063/1.4871015 .
13. Debieu O., Cardin J., Portier X., Gourbilleau F. Effect of the Nd content on the structural and photoluminescence properties of silicon-rich silicon dioxide thin films. Nanoscale Res. Lett. 2011. 6, No 1. P. 161. https://doi.org/10.1186/1556-276X-6-161 .
14. Liang C.-H., Cardin J., Labbe C., Gourbilleau F. Evidence of two sensitization processes of Nd3+ ions in Nd-doped SiOx films. J. Appl. Phys. 2013. 114, No 3. P. 033103. https://doi.org/10.1063/1.4813610 .
15. Khomenkova L., Labbe C., Portier X., Carrada M., Gourbilleau F. Undoped and Nd3+ doped Si-based single layers and superlattices for photonic applications. phys. status solidi (a). 2013. 210, No 8. P. 1532–1543. https://doi.org/10.1002/pssa.201200942 .
16. Steveler E., Rinnert H., Vergnat M. Photolumi-nescence properties of Nd-doped silicon oxide thin films containing silicon nanoparticles. J. Lumin. 2014. 150. P. 35–39. https://doi.org/10.1016/j.jlumin.2014.01.061 .
17. Steveler E., Rinnert H., and Vergnat M. Low-temperature photoluminescence properties of Nd-doped silicon oxide thin films containing silicon nanocrystals. J. Lumin. 2017. 183. P. 311–314. https://doi.org/10.1016/j.jlumin.2016.11.048 .
18. Beainy G., Weimmerskirch-Aubatin J., Stoffel M. et al. Structural and optical study of Ce segregation in Ce-doped SiO1.5 thin films. J. Appl. Phys. 2015. 118, No 23. P. 234308. https://doi.org/10.1063/1.4938061 .
19. Beainy G., Weimmerskirch-Aubatin J., Stoffel M. et al. Atomic scale investigation of Si and Ce-rich nanoclusters in Ce-doped SiO1.5 thin films. phys. status solidi (c). 2015. 12, No 12. P. 1313–1316. https://doi.org/10.1002/pssc.201510081 .
20. Beainy G., Weimmerskirch-Aubatin J., Stoffel M. et al. Direct insight into Ce-silicates/Si-nanoclusters snowman-like Janus nanoparticles formation in Ce-doped SiOx thin layers. J. Phys. Chem. C. 2017. 121, No 22. P. 12447–12453. https://doi.org/10.1021/acs.jpcc.7b03199 .
21. Watanabe K., Tamaoka H., Fujii M. et al. Excitation of Tm3+ by the energy transfer from Si nanocrystals. Physica B. 2001. 308–310. P. 1121–1124. https://doi.org/10.1016/S0921-4526(01)00903-6 .
22. Watanabe K., Tamaoka H., Fujii M., Moriwaki K., Hayashi S. Excitation of Nd3+ and Tm3+ by the energy transfer from Si nanocrystals. Physica E. 2002. 13, No 2–4. P. 1038–1042. https://doi.org/10.1016/S1386-9477(02)00297-7 .
23. Li D., Zhang X., Jin L., Yang D. Structure and lumi-nescence evolution of annealed Europium-doped silicon oxides films. Opt. Exp. 2010. 18, No 26. P. 27191–27196. https://doi.org/10.1364/OE.18.027191 .
24. Zanatta A.R. Coexistence of Sm3+and Sm2+ ions in amorphous SiOx: Origin, main light emission lines and excitation-recombination mechanisms. Opt. Mater. Exp. 2016. 6, No 6. P. 2109–2117. https://doi.org/10.1364/OME.6.002108 .
25. Dieke G.H. Spectra and Energy Levels of Rare Earth Ions in Crystals. Wiley, New York, 1968. .
26. Kushnirenko V.I., Sopinskyy M.V., Manoilov E.G., Khomchenko V.S. Luminescent spectroscopy of TbF3 and TbF3–SmF3–HoF3–PrF3 crystals. J. Alloys. Compd. 2008. 451, No 1–2. P. 209–211. https://doi.org/10.1016/j.jallcom.2007.04.178 .
27. Ofelt G.S. Structure of the f 6 configuration with application to rare-earth ions. J. Chem. Phys. 1963. 38, No 9. P. 2171–2179. https://doi.org/10.1063/1.1733947 .
28. Grenet G., Kibler M., Gros A. et al. Spectrum of Sm2+:SrClF. Phys. Rev. B. 1980. 22, No 11. P. 5052–5067. https://doi.org/10.1103/PhysRevB.22.5052 .
29. He Y., Ma K., Bi L., Feng J.Y., Zhang Z.J. Nickel-induced enhancement of photoluminescence from Si-rich silica films. Appl. Phys. Lett. 2006. 88, No 3. P. 031905. https://doi.org/10.1063/1.2165292 .
30. Yoon J.H. Enhanced formation of Si nanocrystals in silicon-rich oxide implanted with Ni. Mater. Lett. 2014. 136. P. 237–240. https://doi.org/10.1016/j.matlet.2014.07.178 .
31. Voitovych V.V., Rudenko R.M., Kolosiuk A.G. et al. Effect of tin on the processes of silicon-nanocrystal formation in amorphous SiOx thin-film matrices. Semiconductors. 2014. 48, No 1. P. 73–76. https://doi.org/10.1134/S1063782614010242 .
32. Mustafa D., Biggemann D., Martens J.A. et al. Erbium enhanced formation and growth of photoluminescent Er/Si nanocrystals. Thin Solid Films. 2013. 536. P. 196–201. https://doi.org/10.1016/j.tsf.2013.03.027 .
33. Zamchiy A.O., Baranov E.A., Khmel S.Ya. et al. Aluminum-induced crystallization of silicon suboxide thin films. Appl. Phys. A. 2018. 124. P. 646. https://doi.org/10.1007/s00339-018-2070-y .
34. Vlasenko N.A., Sopinskii N.V., Gule E.G. et al. Effect of erbium fluoride doping on the photo-luminescence of SiOx films. Semiconductors. 2012. 46, No 3. P. 323–329. https://doi.org/10.1134/S1063782612030232 .
35. Nikolenko A.S., Sopinskii N.V., Strelchuk V.V. et al. Raman study of Si nanoparticles formation in the annealed SiOx and SiOx:Er,F films on sapphire substrate. J. Optoelectron. Adv. Mater. 2012. 14, No 1–2. P. 120–124. .
36. Sopinskii N.V., Vlasenko N.A., Lisovskyy I.P. et al. Formation of nanocomposites by oxidizing annealing of SiOx and SiOx?Er,F? films: Ellipsometry and FTIR analysis. Nanoscale Res. Lett. 2015. 10. P. 232. https://doi.org/10.1186/s11671-015-0933-0 .
37. Kenyon A.J., Trwoda P.F., Pitt C.W. The origin of photoluminescence from the thin films of silicon-rich silica. J. Appl. Phys. 1996. 79, No 12. P. 9291–9299. https://doi.org/10.1063/1.362605 .
38. Lisovskyy I.P., Indutnyy I.Z., Gnennyy B.N. et al. Structural–phase transformations in SiOx films in the course of vacuum heat treatment. Semiconductors. 2003. 37, No 1. P. 97–102. https://doi.org/10.1134/1.1538546 .
39. Indutnyi I.Z., Michailovska E.V., Shepeliavyi P.E., and Dan’ko V.A. Visible photoluminescence of selectively etched porous nc-Si–SiOx structures. Semiconductors. 2010. 44, No 2. P. 206–210. https://doi.org/10.1134/S1063782610020120 .
40. Limpens R., Lesage A., Fujii M., Gregorkiewicz T. Size confinement of Si nanocrystals in multi-nanolayer structures. Sci. Rep. 2015. 5. P. 17289. https://doi.org/10.1038/srep17289 .
41. Lisovskyy I.P., Voitovich M.V., Sarikov A.V. et al. Transformation of the structure of silicon oxide during the formation of Si nanoinclusions under thermal annealing. Ukr. J. Phys. 2009. 54, No 4. P. 383–390. .
42. Malchukova E.V., Boizot B., Trapeznikova I.N., and Terukov E.I. Optical properties and kinetics of the luminescence decay of Sm3+ and Sm2+ ions in aluminoborosilicate glasses. Bull. Russ. Acad. Sci. Phys. 2019. 83, No 3. P. 277–281. https://doi.org/10.3103/S1062873819030158 .
43. Sakirzanovas S., Katelnikovas A., Dutczak D., Kareiva A. and Justel T. Concentration influence on temperature-dependent luminescence properties of samarium substituted strontium tetraborate. J. Lumin. 2012. 132, No 1. P. 141–146. https://doi.org/10.1016/j.jlumin.2011.08.011 .
44. Edgar A., Varoy C.R., Koughia C. et al. High-resolution X-ray imaging with samarium-doped fluoroaluminate and fluorophosphate glass. J. Non-Cryst. Solids. 2013. 377. P. 124–128. https://doi.org/10.1016/j.jnoncrysol.2012.12.022 .
45. Babu B.H., Kumar V.V.R.K. Fluorescence properties and electron paramagnetic resonance studies of ?-irradiated Sm3+ doped oxyfluoroborate glasses. J. Appl. Phys. 2012. 112, No 9. P. 093516. https://doi.org/10.1063/1.4764043 .
46. Nogami M. and Abe Y. Fluorescence properties of Sm2+ ions in silicate glasses. J. Appl. Phys. 1996. 80, No 1. P. 409–414. https://doi.org/10.1063/1.362770 .
47. Wang J., Huang Y., Li Y., Seo H.J. The reduction and luminescence characteristics of Sm2+ doped in Ba3BP3O12 crystal. J. Am. Ceram. Soc. 2011. 94, No 5. P. 1454–1459. https://doi.org/10.1111/j.1551-2916.2010.04250.x .
48. Rao B.V., Kumar R.J. and Rao K.V. Concentration quenching effects in samarium doped zinc phosphate glasses for visible applications. Int. J. Pure Appl. Phys. 2017. 13, No 3. P. 301–316. .
49. Campbel I.H. and Fauchet P.M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 1986. 58, No 10. P. 739–741. https://doi.org/10.1016/0038-1098(86)90513-2 .
50. Viera G., Huet S., Boufendi L. Crystal size and tem-perature measurements in nanostructured silicon using Raman spectroscopy. J. Appl. Phys. 2001. 90, No 8. P. 4175–4183. https://doi.org/10.1063/1.1398601 .
51. Rani E., Ingale A.A., Chaturvedi A. et al. Corre-lation of size and oxygen bonding at the interface of Si nanocrystal in Si–SiO2 nano-composite: A Raman mapping study. J. Raman Spectrosc. 2016. 47, No 4. P. 457–467. https://doi.org/10.1002/jrs.4832 .
| |
|
|