Semiconductor Physics, Quantum Electronics & Optoelectronics, 26 (1), P. 084-088 (2023).
DOI: https://doi.org/10.15407/spqeo26.01.084
References
1. Vinogradov A.P., Dorofeenko A.V., Pukhov A.A., Lisyansky A.A. Exciting surface plasmon-polari-tons in the Kretschmann configuration by a light beam. Phys. Rev. B. 2018. 97, No 23. P. 235407. https://doi.org/10.1103/PhysRevB.97.235407 .
2. Franzen S., Losego M., Kang M., Sachet E., Maria J.-P. Infrared surface plasmo resonance. In: Introduction to Plasmonics (Advances and Applications). Eds: S. Szunerits, R. Boukerroub. Pan Stanford Publ., Singapore, 2015.
3. Omidniaee A., Karimi S., Farmani A. Surface plasmon resonance-based SiO2 Kretschmann configuration biosensor for the detection of blood glucose. Silicon. 2022. 14. P. 3081–3090. https://doi.org/10.1007/s12633-021-01081-9 .
4. Aubin J., Ferrando M., Jiricny V. Current methods for characterising mixing and flow in micro-channels. Chem. Eng. Sci. 2010. 65, No 6. P. 2065–2093. https://doi.org/10.1016/j.ces.2009.12.001 .
5. Dorozinska H.V., Dorozinsky G.V., Maslov V.P. Promising method for determining the concentration of nano-sized diamond powders in water suspensions. Functional Materials. 2018. 25, No 1. P. 158–164. https://doi.org/10.15407/fm25.01.1 .
6. Du W., Ren X., Pei Z., Ma C. Ceramic binder jetting additive manufacturing: A literature review on density. J. Manuf. Sci. Eng. 2020. 142, No 4. P. 040801. https://doi.org/10.1115/1.4046248 .
7. Scelzo M.T., Eneren P., Sakamoto Y., Peveronim L. Design and validation of a capacitance-based sensor for slurry density measurement. Exp. Therm. Fluid Sci. 2021. 122. P. 110299. https:// doi.org/10.1016/j.expthermflusci.2020.110299 .
8. Wu X., Xue Zh., Zhao H. et al. Measurement of slurry droplets by digital holographic microscopy: Fundamental research. Fuel. 2015. 158. P. 697–704. https://doi.org/10.1016/j.fuel.2015.05.018 .
9. Toledano-Osorio M., Osorio R., Osorio E., Medina-Castillo A.L., Toledano M. Novel pastes containing polymeric nanoparticles for dentin hypersensitivity treatment: An in vitro study. Nanomaterials. 2021. 11, No 11. P. 3150. https://doi.org/10.3390/nano11113150 .
10. Liljeborg A., Tellefsen G., Johannsen G. The use of a profilometer for both quantitative and qualitative measurements of toothpaste abrasivity. Int. J. Dent. Hyg. 2009. 8, No 3. P. 237–243. https://doi.org/10.1111/j.1601-5037.2009.00433.x .
11. Serozhkin Yu., Kollyukh O., Venger Ye. Detection of dust grains vibrations with a laser heterodyne receiver of scattered light. J. Quant. Spectrosc. Radiat. Transf. 2008. 109, No 8. P. 1517–1526. https://doi.org/10.1016/j.jqsrt.2008.01.008 .
12. Zhou Q., Wang J., Tian L., Feng L., Li J., Xing Q. Remotely sensed water turbidity dynamics and its potential driving factors in Wuhan, an urbanizing city of China. J. Hydrol. 2021. 593. P. 125893. https://doi.org/10.1016/j.jhydrol.2020.125893 .
| |
|
|