Semiconductor Physics, Quantum Electronics & Optoelectronics, 26 (1), P. 097-104 (2023).
DOI: https://doi.org/10.15407/spqeo26.01.097


References

1. Ghasemian S., Faridzad A., Abbaszadeh P. et al. An overview of global energy scenarios by 2040: Identifying the driving forces using cross-impact analysis method. 2020. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-020-02738-5 .

2. Acaroglu H., Gullu M. Climate change caused by renewable and non-renewable energy consumption and economic growth: A time series ARDL analysis for Turkey. Renew. Energy. 2022. 193. P. 434–447. https://doi.org/10.1016/j.renene.2022.04.138 .

3. Chakraborty D., Alam A., Chaudhuri S. et al. Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence. Appl. Energy. 2021. 291. P. 116807. https://doi.org/10.1016/j.apenergy.2021.116807 .

4. Gielen D., Boshell F., Saygin D. et al. The role of renewable energy in the global energy transfor-mation. Energy Strateg. Rev. 2019. 24. P. 38–50. https://doi.org/10.1016/j.esr.2019.01.006 .

5. Xu D., Yuan Z.-L., Bai Z. et al. Optimal operation of geothermal-solar-wind renewables for community multi-energy supplies. Energy. 2022. 249. P. 123672. https://doi.org/10.1016/j.energy.2022.123672 .

6. Chicherin S., Zhuikov A., Kolosov M. et al. Opti-mizing the renewable and fossil-fired generation capacities: Case study of interconnected district-level systems. Energy Rep. 2022. 8. P. 137–144. https://doi.org/10.1016/j.egyr.2021.11.095 .

7. Atsu F., Adams S. Energy consumption, finance, and climate change: Does policy uncertainty matter? Econ. Anal. Policy. 2021. 70. P. 490–501. https://doi.org/10.1016/j.eap.2021.03.013 .

8. Rahman A., Farrok O., Haque M.M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022. 161. P. 112279. https://doi.org/10.1016/j.rser.2022.112279 .

9. K?yak I., Oral B., Topuz V. Smart indoor LED lighting design powered by hybrid renewable energy systems. Energy Build. 2017. 148. P. 342–347. https://doi.org/10.1016/j.enbuild.2017.05.016 .

10. Chew I., Kalavally V., Oo N.W., Parkkinen J. Design of an energy-saving controller for an intelligent LED lighting system. Energy Build. 2016. 120. P. 1–9. https://doi.org/10.1016/j.enbuild.2016.03.041 .

11. Pekur D.V., Kolomzarov Y.V., Sorokin V.M., Nikolaenko Y.E. Super powerful LED luminaires with a high color rendering index for lighting systems with combined electric power supply. SPQEO. 2022. 25. P. 97–107. https://doi.org/10.15407/spqeo25.01.097 .

12. Liu X., Sun Y., Wei S. et al. Illumination distribu-tion and daylight glare evaluation within different windows for comfortable lighting. Results Opt. 2021. 3. P. 100080. https://doi.org/10.1016/j.rio.2021.100080 .

13. Mayhoub M.S., Rabboh E.H. Daylighting in shop-ping malls: Customer’s perception, preference, and satisfaction. Energy Build. 2022. 255. P. 111691. https://doi.org/10.1016/j.enbuild.2021.111691 .

14. Udhwani L., Soni A. Evaluation of daylighting performance in an office building: A case study. Mater. Today Proc. 2021. 46. P. 5626–5631. https://doi.org/10.1016/j.matpr.2020.09.518 .

15. Simona P.L., Spiru P., Ion I.V. Increasing the energy efficiency of buildings by thermal insula-tion. Energy Procedia. 2017. 128. P. 393–399. https://doi.org/10.1016/j.egypro.2017.09.044 .

16. Lee L.S.H., Jim C.Y. Transforming thermal-radiative study of a climber green wall to innovative engineering design to enhance building-energy efficiency. J. Clean. Prod. 2019. 224. P. 892–904. https://doi.org/10.1016/j.jclepro.2019.03.278 .

17. Paraschiv S., Paraschiv L.S., Serban A. Increasing the energy efficiency of a building by thermal insulation to reduce the thermal load of the micro-combined cooling, heating and power system. Energy Rep. 2021. 7. P. 286–298. https://doi.org/10.1016/j.egyr.2021.07.122 .

18. Rahman M.M., Mahlia T.M.I., Uddin M.N. Energy efficiency analysis in building walls in tropical climate using thermal insulation system. Encyclopedia of Renewable and Sustainable Materials. 2020. 1. P. 255–261. https:// doi.org/10.1016/B978-0-12-803581-8.11114-2 .

19. Abu Bakar N.N., Hassan M.Y., Abdullah H. et al. Energy efficiency index as an indicator for measuring building energy performance: A review. Renew. Sustain. Energy Rev. 2015. 44. P. 1–11. https://doi.org/10.1016/j.rser.2014.12.018 .

20. Gonzalez A.B.R., Diaz J.J.V., Caamano A.J., Wilby M.R. Towards a universal energy efficiency index for buildings. Energy Build. 2011. 43. P. 980–987. https://doi.org/10.1016/j.enbuild.2010.12.023 .

21. Guo C., Bian C., Liu Q. et al. A new method of evaluating energy efficiency of public buildings in China. J. Build. Eng. 2022. 46. P. 103776. https://doi.org/10.1016/j.jobe.2021.103776 .

22. Kumar A., Kar P., Warrier R. et al. Implementation of smart LED lighting and efficient data manage-ment system for buildings. Energy Procedia. 2017. 143. P. 173–178. https://doi.org/10.1016/j.egypro.2017.12.667 .

23. Davidovic M., Kostic M. Comparison of energy efficiency and costs related to conventional and LED road lighting installations. Energy. 2022. 254. P. 124299. https://doi.org/10.1016/j.energy.2022.124299 .

24. Yoomak S., Jettanasen C., Ngaopitakkul A. et al. Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system. Energy Build. 2018. 159. P. 542–557. https://doi.org/10.1016/j.enbuild.2017.11.060

25. The European commission, Energy labelling of household dishwashers and repealing Commission Delegated Regulation (EU) No 1059/2010. Off. J. Eur. Union. 2019. P. 134–154. http://data.europa.eu/eli/reg_del/2019/2017/oj .

26. Ding Q., Liang X., Zhao Y. et al. Study on Chinese and U.S. Energy Efficiency Regulations and Standards for Efficient Lighting Products. E3S Web Conf. 2018. 53. P. 02010. https://doi.org/10.1051/e3sconf/20185302010 .

27. Pekur D.V., Sorokin V.M., Nikolaenko Y.E. Features of wall-mounted luminaires with different types of light sources. Electrica. 2021. 21. P. 32–40. https://doi.org/10.5152/electrica.2020.20017 .

28. Fujiwara K. Photonmetric quantities and their application, in: Plant Factory Basics, Applications and Advances. T. Kozai, G. Niu, J.G. Masabni (Eds). Academic Press, 2021. P. 83–99. https:// doi.org/10.1016/B978-0-323-85152-7.00004-5 .

29. Martinsons C., Hlayhel R. A method to measure the spectral responsivity of a photometer using optical excitations with arbitrary spectral distributions. Light. Res. Technol. 2021. 54, Issue 4. P. 1–18. https://doi.org/10.1177/14771535211026322 .

30. Nikolaenko Y.E., Pekur D.V., Sorokin V.M. Light characteristics of high-power LED luminaire with a cooling system based on heat pipe. SPQEO. 2019. 22. P. 366–371. https://doi.org/10.15407/spqeo22.03.366 .

31. Cusumano P., Garraffa G., Stivala S. A simple method for the photometric characterization of organic light-emitting diodes. Solid. State. Electron. 2022. 195. P. 108394. https://doi.org/10.1016/j.sse.2022.108394 .

32. Qian C., Fan X.J., Fan J.J., Yuan C.A., Zhang G.Q. An accelerated test method of luminous flux depreciation for LED luminaires and lamps. Reliab. Eng. Syst. Saf. 2016. 147. P. 84–92. https://doi.org/10.1016/j.ress.2015.11.009 .

33. Yan J., Liu H., Zhao W., Su Y. Long-term stability of LED filament standard lamps for total luminous flux. Proc. 2021. 11899, Opt. Metrol. Insp. Ind. Appl. VIII. P. 1189918. https://doi.org/10.1117/12.2602256 .

34. Park S., Kim Y.-W., Lee D.-H., Park S.-N. Preparation of a standard light-emitting diode (LED) for photometric measurements by functional seasoning. Metrologia. 2006. 43. P. 299–305. https://doi.org/10.1088/0026-1394/43/3/013 .

35. El-Moghazy E.M., Gaballah A.E.H. Uncertainty estimation of luminous flux for LED lamps due to the control of electric power. ECS J. Solid State Sci. Technol. 2022. 11. P. 066005. https://doi.org/10.1149/2162-8777/ac7ad4 .

36. Pekur D.V., Sorokin V.M., Nikolaenko Y.E. et al. Electro-optical characteristics of an innovative LED luminaire with an LED matrix cooling system based on heat pipes. SPQEO. 2020. 23. P. 415–423. https://doi.org/10.15407/spqeo23.04.415 .

37. Uddin S., Shareef H., Mohamed A. Power quality performance of energy-efficient low-wattage LED lamps. Measurement. 2013. 46. P. 3783–3795. https://doi.org/10.1016/j.measurement.2013.07.022 .

38. Williams J.H. Guide to the Expression of Uncer-tainty in Measurement (the GUM), in: Quantifying Measurement: The Tyranny of Numbers. IOP Publ., 2016. P. 6–9. https://doi.org/10.1088/978-1-6817-4433-9ch6 .