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Abstract. Tandem structures have been introduced to the photovoltaics (PV) market to
boost power conversion efficiency (PCE). Single-junction cells’ PCE, either in a
homojunction or heterojunction format, are clipped to a theoretical limit associated with the
absorbing material bandgap. Scaling up the single-junction cells to a multi-junction tandem
structure penetrates such limits. One of the promising tandem structures is the perovskite
over silicon topology. Si junction is utilized as a counter bare cell with perovskites
layer above, under applying the bandgap engineering aspects. Herein, we adopt
BaTiOs/CsPbCIls/MAPDBrs/CH3NH3Pbls/c-Si - tandem structure to be investigated. In
tandem PVs, various input parameters can be tuned to maximize PCE, leading to a massive
increase in the input combinations. Such a vast dataset directly reflects the computational
requirements needed to simulate the wide range of combinations and the computational
time. In this study, we seed our random-forest machine learning model with the 3x10°
points’ dataset with our optoelectronic numerical model in SCAPS. The machine learning
could estimate the maximum PCE limit of the proposed tandem structure at around 37.8%,
which is more than double the bare Si-cell reported by 18%.
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1. Introduction

Boosting solar cell power conversion efficiency (PCE)
is a global challenge in the research community [1-4].
Such boosting can be implemented on a mono-junction
cell level [5, 6] regarding new materials and/or
structures. Alternatively, enhancing PCE by integrating
multi-junctions in the form of tandem cells [1, 7-10].
Basically, tandem structures record is relatively higher
than that of PCE concerning mono-junctions, which can
exceed the theoretical limit associated with mono-
junction cells [11, 12]. Various multi-junction tandem
structures have been reported in the literature, seeking
maximum PCE, robust stability, and minimum cost
[11]. Among various topologies, combining perovskites
with Si, it has been reported a considerable potential for
high-efficiency tandem cells [1, 9-14]. On the one hand,

utilizing silicon as a counter cell increases the robust-
ness of the tandem structure as a stable cell. On the
other hand, perovskites’ front layer(s) can maximize the
captured photons by bottom-up bandgap widening.
Although tandem structures demonstrate ultra-high
capabilities to maximize PCE of tandem cells, the opti-
mization process for such structures is a real challenge
[1, 10, 11]. This is due to the nature of this structure
containing a series of cascaded layers, where each layer
has its internal optimization parameters, i.e., thickness,
doping, defects, etc. Additionally, the coupling parameters
between layers boundaries contribute to the overall PCE
calculations. Accordingly, the parameters associated with
PCE maximization are substantial, making it inapplicable
to tackle the optimization experimentally. Based on that,
numerical techniques are commonly used to investigate
large input combinations [1, 9-11, 14]. Most probably,
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this numerical optimization process requires high compu-
tational resources and considerable computing time. In
addition, these numerical optimizers consider minimal
inputs, for example, the front electrode [10] or a single
layer in the cascaded structure [14].

With the aid of a machine and deep learning, the
solar cells in general, and tandem cells in particular, can
be optimized [7, 15]. In addition, some reported literature
has shown the utilization of machine and deep learning
algorithms to predict cell efficiencies. Integration of the
machine learning (ML) algorithm facilitates optimization
of the process, especially for sophisticated tandem
structures, as well as enables the prediction capabilities,
beyond the range of the input dataset.

In this study, we provide an attempt to optimize a
counter Si cell used for perovskite/Si tandem structure to
maximize the output power conversion efficiency. The
study highlights the ranking of several inputs in terms of
their contribution to PCE as the main output. Single and
multi-dimension optimization curves are plotted, seeking
an optimum Si-based cell. Consequently, the overall
perovskite/Si cell has been simulated with all the
corresponding macroscopic parameters.

2. Optoelectronic, machine learning models, and
dataset generation

The optoelectronic and carrier transport modeling for
the perovskite/Si tandem cell is performed using
SCAPS [16-20]. SCAPS model solar cells as a
cascaded layer, with each of a given optoelectronic
properties, see schematic in Fig. 1, and data in Table.
The front perovskite structure is chosen to be:
BaTiO3/CsPbCly/MAPbBrs/CH;NHsPbl;.  The  front
perovskite structure is cascaded from the counter side
by a crystalline silicon cell with an n"*-n-p™* junction.
The AM1.5G spectrum optically injects the overall
tandem structure under the one Sun condition.

Recently, ML algorithm has been effectively
integrated into various semiconductor and optoelec-
tronics materials and device optimization and prediction
[21-24]. This is usually tagged under the name of mate-
rial informatics or devices informatics. As mentioned
earlier, this paper focuses on optimizing the structure in
terms of the counter bare Si silicon. We investigate PCE
of the Si cell due to variations of both doping and
thickness for the n-region and highly doped n**-region.

Fig. 1. The schematic for perovskite/Si tandem cell consists of
BaTiO3/CsPbCly/MAPbBry/CH;NH;Pbls/c-Si tandem cell.

Table. Input material parameters for the c-Si bare cell. The cell
was selected to represent the experimental work reported
in [27].

Material/Parameter | n*"-c-Si n-c-Si p**-c-Si
Thickness (um) 0.05 220 0.1
Concentration donors donors acceptors
(cm™) 8.75-10" | 2.00-10* | 1.70-10%

Herein, we promote these four inputs from a series of
simulations using SCAPS to capture the main contri-
buting design parameters to PCE. The dataset combing
four inputs along with PCE as output is listed to be
seeded in a random-forest machine learning model.

In this study, we apply a random forest ML
algorithm to optimize the Si counter cell. Random forest
(RF) is a supervised machine learning algorithm, and its
primary usage is in machine learning problems of
classification and regression [25]. Random forest is a
decision-tree-based algorithm; it operates using multiple
decision trees that run in parallel with each other,
preventing any interaction between them from ensuring
that the analysis of each decision tree is not affected by
the other trees. This method of combining the analysis
of multiple algorithms to generate a more accurate result
is called “Ensemble Learning”. Another critical aspect
of the Random forest algorithm is its randomization
capabilities, also named Bootstrap Aggregation or
Bagging [25]. The Bagging method allows the random
sampling of data points before using the decision-tree
algorithm. Moreover, bagging is random sampling with
replacement, which means that bagging could sample
some of the data points more than once; which
decreases the bias in the sampled data points, prevents
over-fitting, as well as reduces the variance of the
algorithm [25]. Thus, it solves the disadvantage of using
multiple decision trees, as the decision-tree algorithm
usually has a high variance value due to its sensitivity to
small changes in the input values [25, 26].

3. Simulation results and discussion

This section demonstrates all the results extracted from
the ML algorithm, seeded by the dataset implemented
using SCAPS. The random forest model’s training
capabilities should be tested and validated as represented
in Fig. 2. The model recorded 99.3% overall prediction
accuracy, with a maximum root mean square error devia-
tion of 0.367%. As stated earlier, in tandem structure,
significantly, with multi-cascaded junctions, the input
parameters that can contribute to PCE increase
considerably. However, the contribution of these inputs
to PCE is not equally weighted. Primitively, we use
SCAPS to narrow down the dominating input
contribution list. It was observed that the bare silicon cell
parameters, especially the n-doped regions, dominate the
overall tandem cell PCE. Accordingly, the thickness and
doping of the n™*- and n-regions are selected as the
primary input parameters against the overall PCE.
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Fig. 2. The overall fitting accuracy for the proposed random-
forest model by using the dataset extracted from SCAPS for the
tandem structure.

Obviously, by observing Fig. 3, a direct propor-
tionality between each of the four inputs and PCE is
recorded. This reflects the basic semiconductor under-
standing concerning the impact of increasing either the
doping or thickness in enhancing the dominating carrier,
electrons, in this case, densities. This increasing trend is
followed by saturation, as in Fig. 3d, or sometimes
degradation. The saturation, or even reduction, is a
function of the reduction in mobility due to the higher
density of impurities as well as the domination of the
recommendation effect. Regardless of the expected
standard behavior shown in Fig. 3, the main point is that
these inputs contribute equality to PCE? Answering this
question impacts the capabilities to boost the overall PCE
of the tandem structure.

One of the main advantages of the random forest
machine learning model is that it not only allows
predicting the tandem cell performance under a wide
range of input conditions but also ranks the input in terms
of its contribution to PCE as the main output. The chart
in Fig. 4 highlights the importance level for the selected
four inputs on PCE of the cell. Here, it can be observed
that the doping of the n-region is the main dominating
parameter in PCE. We can attribute this to the cortical
role of the n-region sandwiched between the two high-
doped regions. The n-region is considered as the main
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Fig. 3. Variation of four selected inputs against PCE of the tandem cell, with the ML fitting model: (a) n-region doping under n**-
doping of 8.75-10% cm™, with 0.1-um thickness, while the n-region is of 220-um thickness, (b) n**-doping impact on PCE, under
n-region doping of 2-10* cm 3, with 220-um thickness, while the n**-region of 0.1-um thickness, (c) n-region thickness influence
on PCE under n**-doping of 8.75-10% cm™3, with 0.1-um thickness, while the n-region doping reaches 2-10* cm™=, and (d) n**-
thickness impact on PCE, under n-region doping of 2-10* cm®, with 220-um thickness, while the n**-region doping reach

8.75:10% cm3,
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Fig. 4. Contribution level of the four selected inputs on PCE of
the tandem cell.
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Fig. 5. Impact of the doping in both n- and n**-regions on PCE
of tandem cells. The ML prediction curve is under the n-region
thickness close to 500 pm, for the n**-region thickness of
300 um.

absorbing layer in the c-Si bare cell. In other words, this
layer compensates for the role of the intrinsic layer in the
standard p-i-n junction cell — the n-region layer already
with relatively high thickness, a minimum of 200 pum.
Accordingly, the effect of thickness is relatively diluted,
as it is already beyond the absorption length of Si. This
promotes doping to be the main contributing parameter.

In addition to the n-region doping, the n**-region
doping and thickness were recorded. For the second and
third places of importance, see Fig. 4. The n"*-region acts
as the stock for electrons in the n™-n-p™* junction.
Knowing that the sandwiched layer is n-doped led to an
asymmetric junction, biased towards electrons rather than
holes. In other words, a bipolar junction, with dominating
electrons, contributes to current density rather than holes.
Again, the doping contribution in the n**-region has a
slightly higher effect than the same layer thickness.
However, the n*™"-region thickness is significantly
cortical, while referencing the n-region thickness.

The importance level shown in Fig. 4 indicated the
critical role of doping in both n- and n**-regions on PCE
of the tandem cell. Consequently, the variation of both
doping is investigated in PCE in the 3D plot in Fig. 5.

The increasing trend shown in the beginning reflects the
same behavior demonstrated in Fig. 3. Interestingly, PCE
recorded a saturation behavior at relatively high doping.
It is attributed to reduction in impurity as well as
recombination effects, as stated earlier. The saturation
behavior observed in Fig. 5 illustrates a limit, i.e., theore-
tical limit, associated with the Si-perovskite tandem cell.
The results record a saturation of around 37.78% for
the BaTiO3/CsPbCl;/MAPbBri/CH3;NH;Pbls/c-Si tandem
structure. This value can be evaluated as good
penetration of the theoretical limit for the Si-counter cell.
In addition, it shows more double boosting against the
reported Si-cell of 18% efficiency.

4, Conclusion

In conclusion, the results of work demonstrated in this
paper provide an attempt to optimize the performance of
a Si-perovskite tandem cell BaTiOs/CsPbCls/MAPDBra/
CHsNH3Pbls/c-Si. Four inputs related to the c-Si cell are
linked in an ultra-huge dataset to the overall PCE. The
dataset is trained using the random forest machine
learning model. Predictions conclude the occurrence of a
clipping PCE close to 37.78%, which can represent a
ceiling limit for the proposed tandem multi-junction cell.
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M. Ganoub, O. Al-Saban, S.O. Abdellatif, K. Kirah, H.A. Ghali

Anortanis. TannemHi cTpykTypu OyiM TpencTaBieHI Ha PUHKY (OTOBOJBTAIKM JUIS IIJBHIIEHHS €(QEKTHBHOCTI
neperBoperHs eneprii (EIIE). EIIE enemeHTiB 3 ogHMM roMo- abo reTeponepexosoM, 0OMeXYeTbCsS TEOPETHIHOIO
MEXXEI0, TOB’3aH0I0 3 IIUPUHOI0 3a00pOHEHOI 30HM MOTJIMHAIOUOro Matepiany. MacmraOyBaHHS OJHOIIEPEXiTHUX
€JIEMEHTIB [10 OaraTomepexiTHUX TaHAEMHHUX CTPYKTYp BHUXOTUTH 3a Ii oOMexeHHS. OHI€I0 3 MepCHeKTHBHHUX
TaHJEMHUX CTPYKTYp € TOIOJOTiS TEPOBCKIT Ha KpeMHii. Si mepexiZi BUKOPHCTOBYETHCS SIK THIBHUM E€JIEMEHT,
YKPUTHI 3BepXy IIapaMH IIEPOBCKITIB i3 ypaxyBaHHAM IH)KEHEPHHX AacHekTiB 3abopoHeHoi 3oHH. TyT s
JNOCHiKeHHsT MU BuOpaiu TanHaeMHy CTpykTypy BaTiO3/CsPbCly/MAPDBr/CH3NH3Pbls/c-Si. V' tanzemuunx
(OTOETIEKTPUYHNX €JIEMEHTaX Pi3Hi BXiJHI MapaMeTpu MOXKHa HamamTyBaTd it Makcumizamii EITE, mo npuBoauts
IO 3HAYHOTO 301UIbIICHHS BXiqHIX KOMOiHaIii. Takuii Benukuid HaOlp JaHUX Oe3MOCcCepeIHO BiIOOpakae BUMOTH JIO
00YHnCIIeHb, SKi HEOOXiTHI JUII MOJIETIOBAHHS IIMPOKOTO Jiana3oHy KOMOIHAIH, 1 10 TPUBAJIOCTI IIUX O0YHUCIEHb. Y
LIbOMY JOCIIUKEHHI MW BHKOPHCTaIM Hally MOJENb MAIIMHHOTO HAaBYAaHHsS BHIIAJIKOBOTO JIiCy 3 HaOOpOM JaHUX
3x10° TOYOK 3 HALIOK ONTOCIEKTPOHHOK HHCenbHOW Moaemtio B SCAPS. 3a [0MOMOrorw MOZEN MAIIMHHOTO
HaBYaHHS MOKHA OLIHUTH MakcuMansHy Mexy EIIE 3amponoHoBaHOi TaHJEMHOI CTPYKTYpH Ha PiBHI IPHUOIM3HO
37,8%, 1o Ginbln HIX yJBIi TIEPEBHUIILY€E 3apeecTpoBaHy e()eKTHBHICTh KpeMHieBHX eneMeHTIB (18%).

Kui04oBi ciioBa: TaHIEMHI COHSYIHI €IIEMEHTH, YHCEIbHE MOJISITIOBAHHS, IIEPOBCKITH, allTOPUTM BHIIaJIKOBOTO JICY,
KPHUCTAJIYHUNA KPEMHIH.
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