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Abstract. The mechanisms underlying the origin of fractal shape of inclusions of a new 

phase in VO2 films during metal-insulator phase transition are discussed. The obtained 

results show that hysteresis of the temperature dependence of resistance R(T) significantly 

depends on the film morphology and texture. Moreover, some fractal features are observed. 

To determine the fractal dimension D of the structural elements of the studied films from 

their images, different fractal analysis approaches were preliminary compared and 

discussed. As a result of the film image treatments, the boundaries of the structural 

elements were found to have fractal dimensions of 1.3 to 1.5 or higher and to correlate with 

the shape of R(T). The fractal boundaries indicate the dominant role of elastic stress on the 

phase transition of films, which is confirmed by numerical modeling. Based on these 

results, an analytical model is proposed that relates the free energy of a film to the fractal 

dimension of its constituents. Depending on the ratio of the elastic and interface specific 

energies, the position of the free energy minimum F corresponds to a certain fractal 

dimensionality D. A small interface energy leads to a higher fractal dimension making the 

initial phase more stable. This conclusion explains well all the effects observed 

experimentally in VO2. The obtained results provide a better understanding of the influence 

of structure and morphology on other properties of the studied films. 
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1. Introduction 
 

Traditionally, metal-insulator transition (MIT) in VO2 

films is detected by changes in such macroscopic 

parameters as conductivity, transparency, etc. At the 

same time, modern research methods (Kelvin probe 

microscopy and/or near-field infrared spectroscopy) 

allow a detailed visualization of the evolution of the 

shape of metallic inclusions in a dielectric matrix and 

vice versa [1]. The respective data show that inclusions 

of a new phase are fractal objects in both cases. 

The fractal character of the inclusions of both 

phases is also well illustrated by the images obtained 

with a scanning near-field infrared microscope. Such 

images show coexistence of inclusions of metallic and 

insulating phases with indented (or fringed) boundaries 

in thin VO2 films [2]. 

The questions naturally arises: Why do the struc-

tural elements in the case of MIT have fractal rather than 

rounded or faceted shape, what exactly does the value of 

the fractal dimension depend on, and what is the mecha-

nism of the appearance of fractal objects in VO2 films? 

 

The present work is intended to answer this question. 

First, we clarify the concept of fractal and fractal 

dimension. There are several close definitions of fractal 

reflecting its different aspects. Here are some of them. 

Fractals are the sets with highly irregular branched or 

indented structure. Fractal objects are fundamentally 

non-smooth, fractured everywhere and having a complex 

structure [3]. 

Mandelbrot [4] gave a mathematical description of 

a fractal as a set, whose dimension D strictly exceeds the 

topological dimension. Hence, the dimension of a fractal 

curve is in the range 1 < D < 2, and that of a fractal 

surface 2 < DS < 3. 

Therefore, a fractal is a fractured, indented (non-

smooth) object having a fractional dimension. For a 

surface profile or a boundary of a certain closed area, the 

fractal dimension, which depends on the complexity of 

the object (the extent to which its boundaries are rugged, 

irregular and winding [4]), lies in the range 1 < D < 2. 

One of the ways to determine the fractal dimension of 

some set of bounded two-dimensional regions of diffe-

rent sizes is to plot the dependence of the perimeter P of  
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such regions on their area A on a double logarithmic 

scale. Then the slope of the dependence lgP(lgA) gives a 

value equal to half of the fractal dimension of the 

boundary. The same method was applied in [1] when 

analyzing MIT in VO2. It turned out that for the whole 

ensemble of inclusions (even at different temperatures in 

the vicinity of MIT), D is the same and can reach the 

value of 1.488 [1]. We also use this method of 

determining the fractal dimension in the present work. 
 

2. Methods for determining fractal dimension from 

image 
 

As noted in [5], there is still practically neither a uniform 

consistently reproducible mathematical (and even more 

so algorithmic) approach to study the fractal properties, 

nor a generally recognized unified software. 

A fairly complete overview of various methods of 

fractal analysis is presented in the Gwyddion software 

manual [6]. These methods are implemented in the soft-

ware itself. In particular, they include the cube counting 

method [7, 8], the triangulation method [7], the variational 

method [9, 10], and the power spectrum method [9–11]. 

At the same time, the software [6] does not 

comprise an implemented method of determining the 

fractal dimension D based on the analysis of the relation 

between the perimeters and the areas, which was 

discussed above. The Gwyddion software finds the 

fractal dimension of the surface DS, which is one unit 

greater than the dimension of the contour line D, 

encircling a flat fractal object, D = DS – 1 [4]. All the 

results and calculations presented below in this paper, 

refer to the fractal dimension of boundaries D. The tests 

demonstrated that Gwyddion performs well for some 

classical fractals such as the “British Coastline” [3, 4] 

(D = 1.21). However, for ordinary (D = 1) and complex 

Euclidean shapes (D = 1.001) as well as for fractals with 

high dimensions (D > 1.5) it gives noticeable errors, 

overestimating D by several tenths in the first case and 

underestimating it in the second case. 

For this reason, we have created a software to 

calculate the value of D in VO2 films based on the 

analysis of the perimeter of fractal figures P as a function 

of their area A. This approach is described in most 

monographs on fractals, in particular in [3, 4]. It was 

originally used for the analysis of the fractal dimensions 

of clouds. It was also applied in [1] to analyze the shape 

of metallic and dielectric inclusions during MIT in VO2. 

In this approach, the dimension of a fractal object boun-

dary D is determined from the slope (magnitude of the 

derivative) of the dependence P(A) in double logarithmic 

coordinates. This dependence has the following form: 

  2DAAP   or A
D

P log
2

loglog  .   (1) 

 

Hence, for the fractal dimension of a contour we have 
 

Ad

PdD

log

log

2
 .      (2) 

 

Here, d corresponds to differentiation. 

 

For Euclidean figures D/2 = 0.5. Exceeding this 

threshold indicates the fractality of objects. Even if the 

figures (including the Euclidean ones) are not quite 

similar to each other (the shape coefficient β varies in a 

certain range), this leads only to an increase in the scatter 

of the experimental points, while maintaining the overall 

value of the slope. If the slope changes upon increasing 

(decreasing) the object size, we can say about 

multifractality of the investigated family. Most often, the 

available image resolution does not allow us to reliably 

detect fractality (ruggedness) of the contour of small-size 

areas, even if it is actually present. 

 

3. Brief description of the created software 
 

The analyzed image is converted to the black and white 

one. Then using filters, the boundaries of the objects with 

different thresholds are identified. Depending on the 

image, three types of filters were used, namely: Sobel, 

Prewitt and combined one [12], combining both 

approaches. 

As a result, each pixel of the image is assigned to 

the figure boundaries, figure inner region or the outer 

region of the background outside all the enclosed 

regions. Then a special algorithm detects each such 

region (as well as its protruding fragments) and finds the 

rectangle encompassing it. Then the perimeter Pi and the 

area Ai are determined just by pixel counting inside the 

enclosing rectangle. The pixels belonging to the 

boundary of the i-th shape give the perimeter, and the 

pixels of the inner region give its area. The pair of the 

values {Ai, Pi} thus corresponds to one experimental point 

of the dependence P = f (A). After removing duplicates, a 

regression curve of the form (1) is constructed by the 

least square method in double logarithmic scale. The 

angular coefficient of this log-log plot is a half of the 

fractal dimension D for the contour of the figures. 

The results of testing our program on Euclidean 

figures and a number of classical fractals showed 

excellent agreement with the predicted values of fractal 

dimension. Processing of the image from [1] resulted in 

D = 1.48116, which is very close to the authors’ result 

(1.488), while Gwyddion (using the cube counting 

method) outputs 1.41 for this case and about 1.3 for a set 

of Euclidean figures. 

 

4. Experimental 
 

VO2 films were grown on (111) Si substrates by 

magnetron sputtering of VO2 [13]. Prior to the film 

deposition, the chamber was pumped out to the pressure 

of (1...2)·10
–5

 Torr. During the deposition process,  

the Ar pressure (99.999% purity) was maintained at 

(2...4)·10
–3

 Torr. The magnetron power was 50...70 W, 

and the substrate temperature was 235 ± 15 °С. After 

deposition, the samples were annealed at 350 °C for 30 h 

in Ar environment. After annealing, the next layer of 

VOx was deposited on the surface, and the samples were 

annealed again. This allowed one to deposit thicker films  

 

http://gwyddion.net/documentation/user-guide-ru/fractal-analysis.html#fractal-analysis-ref-1
http://gwyddion.net/documentation/user-guide-ru/fractal-analysis.html#fractal-analysis-ref-2
http://gwyddion.net/documentation/user-guide-ru/fractal-analysis.html#fractal-analysis-ref-1
http://gwyddion.net/documentation/user-guide-ru/fractal-analysis.html#fractal-analysis-ref-3
http://gwyddion.net/documentation/user-guide-ru/fractal-analysis.html#fractal-analysis-ref-4
http://gwyddion.net/documentation/user-guide-ru/fractal-analysis.html#fractal-analysis-ref-3
http://gwyddion.net/documentation/user-guide-ru/fractal-analysis.html#fractal-analysis-ref-5
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with good adhesive properties as well as to use already 

deposited crystalline films as recrystallization centers. 

The first deposited layer mainly contained the V4O9 

phase and did not undergo MIT. In the present work, we 

considered the films containing three (Fig. 1) and two 

layers (Fig. 2). Scanning electron microscopy images 

were acquired using a MIRA 3 TESCAN equipment. The 

surface nanorelief of the annealed vanadium dioxide 

films was studied using atomic force microscopy (AFM) 

on a scanning probe microscope NanoScope IIIa 

Dimension 3000TM. The measurements were performed 

in the tapping mode by using ultrasharp silicon probes 

with the nominal tip radius of 8 nm. 

It can be seen that the film morphologies and their 

resistance-temperature dependences R(T) are substan-

tially different. In particular, the film with lens-like  
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Fig. 1. Scanning electron microscopy image of the surface of 

the film containing lens-like inclusions (a) and the temperature 
dependence of resistance R(T) without hysteresis observed  

for this film (b). Here, 1 – experimental dependence, 2 – 

dependence of the resistance calculated by the random medium 

model, 3 – calculated temperature distribution of MIT in the 

film G(T), and 4 – calculated temperature dependence of the 

fraction of metallic phase mMe (T). 
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Fig. 2. Scanning electron microscopy image of the surface of 
the film containing both stellar and lamellar inclusions (a) and 

the temperature dependence of resistance R(T) with hysteresis 

in the vicinity of MIT (b) observed for this film. Here, 1 and 2 

are the experimental dependences during heating and cooling, 
3 and 4 are the corresponding resistivity dependences 

calculated by the random medium model. 
 

 

inclusions (three-layer) has zero temperature hysteresis 

of resistance (Fig. 1a). In contrast, the films with stellar 

and lamellar inclusions (two-layer) show a pronounced 

hysteresis (Fig. 2a). We note that lens-like inclusions 

quite often form fractal structures during martensitic 

phase transition in metals [14]. 

 

5. Fractal analysis of images of the studied samples 
 

Figs 3 and 4 show the results of processing two images 

of the VO2 films with significantly different topologies 

(“lenses” and “stars”) and different resistivity hysteresis 

using the Gwyddion software. Despite the significant 

differences in the surface morphology of these films, the 

results of determining the fractal dimension provided by 

this software were almost identical. This applies not only 

to the cube counting method, but also to all the methods 

implemented in it [6], except for the power spectrum 

method. 
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Fig. 5. Results of processing the VO2 film image (Fig. 1a) by 

our software. The fractal dimension of the contour of lens-like 
inclusions D = 1.2894. (Color online) 

 

 

 

 
 
Fig. 6. Results of processing the VO2 film image (Fig. 2a) by 

our program. The fractal dimension of the contour of stellar-

like inclusions D = 1.4924. (Color online) 

 

 

Fig. 3. Results of image processing of VO2 film (Fig. 2a) obtained by Gwyddion 2.50 program. Fractal dimension of the contour of 

stellar inclusions D = 1.487. 

 

 

Fig. 4. Results of image processing of VO2 film (Fig. 1a) obtained by Gwyddion 2.50 program. Fractal dimension of the contour of 

lens-like inclusions D = 1.491. 
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Figs. 5 and 6 show the same images processed by 

our software. The yellow color shows the most probable 

approximation of the experimental points obtained by the 

least square method. The purple and black lines 

correspond to restricting the point family from above and 

below within the spread ±σ. The red line corresponds to 

the hypothetical case when all the analyzed figures are 

purely Euclidean. 

For each of these two cases, markedly different 

fractal dimension values were obtained, which is 

consistent with the apparent differences in the film 

morphology and conductivity. Comparing two softwares 

used, we can conclude that for the considered problem, 

comparison of the area and perimeter of inclusions seems 

to be the best method for determining the fractal 

dimension. Such method unmistakably recognizes the 

figures with Euclidean contour and at the same time 

easily handles classical fractals like coastlines. For 

significantly different film morphologies, it also results 

in different fractal dimensionalities, while other methods 

of fractal analysis only partially succeed. Fig. 7 shows 

the results of the comparison of the hysteresis curves 

R(T) at the fractal dimensions determined from the  

 

 
surface images of another group of samples before and 

after annealing.  

The freshly prepared film shows an exponential 

dependence of the resistance drop with increasing tempe-

rature. Over the entire temperature range (both heating 

and cooling), this film remains dielectric and does not 

demonstrate any MIT (Fig. 7a). Annealing modifies the 

film, creating a heterogeneous morphology in it (Figs 7b 

and 7c) with a rather high fractal dimension, the value of 

which is different in different surface areas. At some sites 

D = 1.711 (Fig. 7d) and at other ones D = 1.884 (Fig. 7e). 

In this case, a pronounced MIT with noticeable hysteresis 

is observed (Fig. 7a). We can also see here that a larger 

hysteresis of R(T) corresponds to a larger value of D. 

The results obtained by mathematical processing of 

surface images showed that crystallites in the films are 

pronounced fractal objects, the fractal dimensions D of 

which approach 1.5 and in some cases exceed this value. 

A correlation between the fractal dimension, film mor-

phology, and behavior of the temperature dependence of 

resistivity during MIT was found. Higher fractal dimen-

sion of the surface morphology elements corresponds to a 

wider hysteresis of the R(T) dependence. 
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Fig. 7. Evolution of the shape of the R(T) curve during annealing of VO2 film in comparison with the change of the fractal dimension 
of surface morphology. Here, (a) are the R(T) dependences for the nonannealed film (black curve) and after annealing (red and blue 

ones); (b) and (c) – scanning probe microscopy images of two different spots of the film surface after annealing. Determination of the 

fractal dimension (d) and (e) from the images (b) and (c). (Color online) 
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6. Calculation of elastic stress in the film structures at 

different crystallite shapes 

 

As noted by many authors, MIT in VO2 is much similar 

to martensitic transformations [15, 16]. In accordance 

with the general ideas about martensitic transformations 

[17], in some cases increase of the elastic energy caused 

by appearance of a new phase can compensate the 

thermodynamic gain associated with the phase transition 

itself. As a result, growth of a new phase stops. 

The tendency of elastic energy minimization during 

martensitic transformations makes the inclusions of a 

new phase have the shape of plates oriented in a special 

way relative to the crystallographic axes of the initial 

lattice. The tendency to reduce the intrinsic elastic energy 

leads to partitioning of the new phase into the domains 

shifted or rotated relative to each other. If the strain 

tensor contains a shear component, the domain shape 

corresponding to the strain energy minimum is a plate 

with a small ratio of thickness to other dimensions. In 

reality, such domains often have the shape of a thin lens 

oriented in a certain way in the crystal [14]. 

Reduction of the elastic energy of the system also 

occurs by partition of lamellar (lens-like) crystals into 

even thinner plane-parallel domains (twins) that mutually 

compensate each other’s elastic fields. It may be assumed 

that fractal objects are also capable of effectively 

relaxing elastic stress in a solid body. This section 

presents the results of numerical modeling of elastic 

fields in a VO2 film containing inclusions of a quasi-

fractal shape that have either a developed boundary of the 

stellar type or represent an ensemble of oriented in a 

certain way lens-like inclusions. Such structures were 

observed experimentally and analyzed above with respect 

to the fractal dimension of the boundaries. The 

calculations were performed using the COMSOL 

Multiphysics software. Without limiting generality, it 

was assumed that the film was subjected to external 

tensile load due to the presence of the substrate.  

 

 

 
 
Fig. 8. Compression and tension distribution in the vicinity of 

a stellar-like inclusion with a smooth boundary of variable 
curvature. (Color online) 

 

We analyzed how effectively the elements of the fractal 

geometry, such as “fringing” and/or roughness of the 

inclusion boundary, can contribute to relaxation of the 

tensile stress in a certain region of the film and, thus, 

affect the phase transition conditions in this region. 

When calculating the stress field created in the 

matrix (VO2 in monoclinic structure) by inclusions of the 

second phase (VO2 in tetragonal structure), the limiting 

option was chosen that these inclusions affect the matrix 

as strongly as possible. For this purpose, cavities similar 

in shape to the inclusions observed experimentally were 

placed into the stretched film. 

Figs 8 and 9 show maps of the distribution of elastic 

compression and tension stress fields in the vicinity of 

quasi-fractal objects with different boundary topologies. 

These maps show not only the regions of complete stress 

relaxation (dark orange, the stress is equal to zero) but 

also the regions of compression (red) and stretching 

(blue). Figs 8 and 9 show that the stellar-like structures 

create within themselves (between their rays or boundary 

relief protrusions) the regions with zero elastic energy, 

where the external elastic stress is completely relaxed. At 

the same time, the ray tips serve as concentrators of 

stress of different signs, which can change the local 

temperature of MIT in either direction from the 

equilibrium value for an unstressed sample. 

Figs 10 and 11 show that effective stress compen-

sation in the vicinity of quasi-fractals with a “fringed” 

and rough boundary is achieved only if the period of the 

protrusions is sufficiently small. Otherwise, the 

unstressed regions (orange) contain nonrelaxed areas in 

the centers between the relief protrusions. In these areas, 

the stress relaxes only partially. The fact that the degree 

of stress field relaxation depends on the boundary relief 

period will be used below in the analytical model. 

However, as shown in Fig. 11, even the initial stages of 

the formation of an additional tree-type fractal structure 

on the boundary relief protrusions lead to almost total 

compensation of this small residual stress. 

 

 

 
 
Fig. 9. Compression and tension distribution in the vicinity of 

an inclusion with “fringed” rugged boundary. (Color online) 
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Fig. 10. Compression and tension distribution in the vicinity of 
a stellar-like inclusion with indented boundary and sharp 

protrusions (stress concentrators of both signs). (Color online) 

 

 

Similar calculations of elastic stress relaxation 

inside the fractal ensemble of lens-like inclusions ([14], 

Fig. 21a) showed that already at the first stage of fractal 

formation, a significant part of the surface inside the 

triangular region bounded by three lenses relaxes 

significantly. As the fractal grows (by repetitively adding 

smaller lenses into the gaps between the larger lenses), 

the effect becomes even stronger and the region with zero 

elastic energy uniformly fills the entire inner space of the 

ensemble. This result is similar to the effect observed in 

Fig. 11. Namely, appearance of small structural elements 

in the vicinity of larger ones leads to a more complete 

and uniform stress relaxation over the volume. 
 

7. Analytical model for calculating the system free 

energy as a function of the fractal dimension of new 

phase inclusions 
 

In this section, we consider the following questions: Why 

do the inclusions of a new phase and the crystallites 

themselves in VO2 films have fractal shapes with certain 

quantitative characteristics in our case of MIT, and what 

is the mechanism of the appearance of fractal objects, in 

particular for metal-dielectric phase transitions? It seems 

that the Euclidean shape with a smooth boundary of the 

minimum perimeter should provide the optimal shape of 

inclusions of a new phase. 

The question of “zigzag” interphase boundaries in 

solids was first considered by Roytburd in the framework 

of a simple model [18]. It was shown that appearance of 

boundaries is a consequence of the instability of a single-

phase state under the action of a long-range (in particular, 

elastic) field generated by this serrated interphase 

boundary. The ratio of the period of teeth h to the zigzag 

boundary thickness l (i.e. the relief span) is determined 

by competition of two factors, namely the elastic energy 

of stress created by the sides of the teeth and the surface 

energy. For thin teeth (h/l << 1), the elastic stress is 

proportional to the deflection of the tooth sides from the 

plane, where the mutual phase distortion is minimized. 

 

 
 

Fig. 11. Correction of the elastic field in the vicinity of a 

stellar-like inclusion with a rugged boundary at appearance of 
additional branches on the protrusions of the boundary relief. 

(Color online) 

 

Therefore, the elastic stress is proportional to h/l, 

and the elastic energy is the smaller, the smaller is h. 

This conclusion is also confirmed by our numerical 

calculations described in the previous section. As the 

period of the boundary roughness decreases, the fraction 

of the film volume where the stress is absent or small 

increases. On the contrary, the surface (interface) energy 

grows with decreasing the tooth thickness h, i.e., with 

increasing the number of relief protrusions per unit 

length of the smoothed boundary. The author gives the 

following approximate expression for the free energy per 

unit length of a zigzag boundary: 
 

   hlllheF  2
2

.     (3) 
 

Here, e and γ are the specific elastic (per unit area) and 

surface (per unit perimeter length) energies. 

Minimizing this expression by h, we obtain the 

equilibrium ratio h/l = (/el)
1/3

, from which the local free 

energy minimum F = F(h/l) is found. Hence, an inclusion 

with a rough boundary may be in principle stable. This 

simplified approach gives us the main idea: the elastic 

energy decreases with decreasing the roughness period of 

the boundary h, while the total perimeter of a new phase 

inclusion (and the interphase energy) grows. Let us apply 

this approach to a fractal inclusion of a new phase. For 

such an object, both the boundary roughness and its 

length (inclusion perimeter) P grow upon increasing the 

fractal dimension. In particular, P = αR
D
, where R is the 

characteristic transverse dimension of the inclusion. Note 

that the appearance of the fraction dimension D does not 

affect the physical dimension of the perimeter value (it 

remains the length), but concerns only its numerical value. 

If we approximate a fractal object by an equal-sized 

Euclidean figure with a smooth boundary and perimeter 

RP EE  , the inverse of the roughness period 

(frequency of relief protrusions) will be equal to 
 

l

R
b

P

P

l
h

D

22

1 1

E

1


  .      (4) 
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Fig. 12. Dependence of the fractal inclusion free energy F and 
its components on the fractal dimension D at different values of 

the interface energy γ. 1–5 – total free energy F(D) at different 

γ. Curve 1 corresponds to a stable inclusion of the Euclidean 

shape. The minimum positions of F(D) for each curve are 
indicated. 
 

 

Here, l is again the average roughness spread or the 

thickness of the notched interface boundary. It can be 

seen that the roughness frequency also increases upon 

increasing the fractal dimension D. We note that since 

the considered figures are equal-sized, the coefficient 

b = /E  1. 

Using the Roytburd formula (3), the free energy of a 

fractal object in a solid-state matrix can be approximated 

as follows: 
 

1

2

1

2 











 D

D
bRl

bR
eF .     (5) 

 

We see that the elastic component of the free energy 

decreases rapidly with increasing the fractal dimension, 

but the interface component increases. The result also 

depends on the size of the inclusion R as well as on the 

boundary roughness l, which in turn implicitly depends 

on the fractal dimension. Taking into account that in this 

case the contour tortuosity is also a consequence of 

fractality (deviation of the figure from the Euclidean 

shape), as a first approximation 1~  DRl  may be 

accepted, where  is another shape coefficient. Finally, 

we obtain that the elastic summand in the free energy 

decreases as 11 DR  and the interface summand 

increases as 
1DR . Taking into account that b is close to 

unity, we finally have  
 

1

1

4 










 
 D

D
R

R
eF .    (5а) 

 

In this simple model, the fractal dimension acts as 

the only control parameter that sets equilibrium inclusion 

shape. Qualitative dependence of the free energy F on the 

fractal dimension D is presented in Figs 12 and 13. It 

follows from these graphs that:  

 

 
 

Fig. 13. Dependence of the fractal inclusion free energy F and 

its components on the fractal dimension D at different values of 
elastic energy e. 1–5 – total free energy F(D) at different e. 

Curve 1 corresponds to a stable inclusion of the Euclidean 

shape. The minimum positions of F(D) for each curve are 

indicated. 
 

 

1) At a certain ratio between the specific energies, 

the minimum of the system free energy corresponds 

exactly to D = 1. In such a system, no stable fractal 

inclusions of a new phase can form. (Fig. 12, curve 1, 

Fig. 13, curve 1.) 

2) If we fix the specific elastic energy e and 

decrease the interface energy γ, the minimum of the F(D) 

curve shifts to larger values of the dimension D, and the 

minimum itself becomes deeper and wider (Fig. 12). At 

small γ, the system consisting of high-dimensional fractal 

inclusions (D ~ 1.4…1.75) becomes anomalously stable. 

However, the broad minimum of F(D) means that a 

larger spread of fractal dimension should be expected, 

since the clusters with D in the range of 1.5 to 1.9 have 

close free energies (Fig. 12, curve 5). 

3) If, on the contrary, the specific interface energy 

is sufficiently large, growth of the inclusion perimeter 

due to the growth of D will quickly cancel out the 

achieved elastic energy gain. In this case, the minimum 

of F(D) will shift toward more and more Euclidean 

shapes. At a certain ratio (γ/e = 4 in our case), formation 

of fractals becomes energetically unfavorable (D = 1). 
4) If we fix γ and increase the specific elastic 

energy e (Fig. 13), e.g. by introducing impurities of a 

large radius or by adding external elastic stress sources, 

D will increase weakly from unity to about 1.4, the free 

energy minimum will narrow, and the energy at the 

minimum will grow because of the pumping the elastic 

energy into the system. At the same time, D will have a 

small variation. Hence, a weak fractality can be induced 

in the system by increasing the role and influence of 

elastic fields. 

5) According to the formula (5a), size dependence 

of F is expressed as 
1DR . Therefore, for shapes close to 

the Euclidean one, the minimum position of F(D) weakly 

depends on the characteristic dimension. On the contrary, 

when the fractal dimension of equilibrium inclusions 
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Fig. 14. Principal possibility of coexistence of inclusions of two 

phases, M and R, in the presence of a coherent boundary 

between them. (Shown by arrows) 
 

 

approaches one and a half and higher, stable inclusions of 

different sizes will also have slightly different boundary 

indentation degrees, the greater, the smaller are the sizes. 

This can be clearly seen from the experimental “area 

versus perimeter” relationships in Figs 5–7. In the small 

size region, the logP(logA) points lie predominantly 

above the regression curve. This trend is particularly 

noticeable in Fig. 7e, where the average value of D > 1.8. 

It follows from the above that MIT has indeed all 

prerequisites for formation of fractal objects, since the 

boundaries between the inclusions of metallic and 

dielectric phases are often coherent (Fig. 14), i.e., the 

interphase energy is small. Comparing the crystal lattices 

of the monoclinic (M) and rutile-like (R) metallic phases, 

it can be seen that the transition R↔M occurs with 

minimal changes in the interatomic distances. In the 

rutile (tetragonal) phase, vanadium atoms form rectilinear 

rows with dV-V = 2.88 Å. In the monoclinic phase, 

vanadium atoms form zigzag chains with dV-V =3.16 Å. 

The pairwise spacing in the M phase is dР-P = 2.62 Å. 

[19]. At the same time, both phases can be docked with 

each other almost without boundary distortion by a 

suitable mutual orientation of the inclusions as can be 

seen in Fig. 14. 

As can be seen from Fig. 12, the initial phase is 

more stable at higher fractal dimensions, and the 

transition metal ↔ dielectric will require stronger 

overheating and overcooling. Consequently, one may 

expect a wider hysteresis on the R(T) dependence. 
 

8. Discussion of physical results 
 

Thus, the reason for the appearance of stable fractal 

structures during MIT is the unique ratio between the 

elastic and interface specific energies in VO2 at the 

boundary between two coexisting phases. The elastic 

interaction decreases when the inclusion boundaries 

become tortuous (fringe-shaped) and, in the limiting 

case, additionally roughened. On the other hand, the 

interface energy is proportional to the perimeter. 

Therefore, it can be minimal only when the inclusion has 

a smooth rounded shape and increases rapidly with the  

 

increase of the boundary ruggedness, i.e. its fractal 

dimension. In the simplest case we have two concurrent 

contributions to the free energy, namely from the long-

range elastic forces and local interface interaction. The 

free energy minimum is achieved at some optimal value 

of D, when both effects are balanced. 

However, as shown by the modeling results, an 

object does not have to be an ideal self-similar fractal at 

all observable scales. Simple star-like shapes, specifically 

arranged lenses and other similar elements with 

hierarchically decreasing dimensions also effectively 

reduce the elastic energy of the system. This is due to the 

well-known effect of “stress relief”. The stress generated 

by large inclusions can be compensated (or the solid may 

be unloaded) by adding suitable smaller inclusions to 

their vicinity. In its turn, the uncompensated residual 

stress generated by these small inclusions can be 

compensated by even smaller suitably located inclusions. 

A fractal has the advantage that it initially 

comprises all the structural elements of all sizes from the 

largest to the smallest ones. Moreover, these elements are 

hierarchically located in the most suitable places relative 

to each other. This allows stress relief to be distributed 

over larger areas, while simultaneously making the stress 

relaxation more uniform in space (Fig. 11). At each 

generation of the fractal growth, more and more small 

elements are formed, each of which relaxes the stress 

generated by the fractal fragments of the previous gene-

ration. Finally, the smallest fragments of the boundary 

become the stress concentrators. The stress becomes 

localized in small regions of the solid (Figs 8–11) 

without significantly affecting nucleation in the rest of 

the matrix. As a result, the deepest possible effect of elas-

tic stress relaxation in the system as a whole is achieved. 

Although in the simple model proposed here the 

fractal dimension is the only controlling parameter, in the 

general case the situation may be more complicated. 

Since everything depends on the mutual arrangement of 

individual elements and a certain hierarchical ratio of 

their sizes, we can assume that the fractal dimension is 

not the only geometrical parameter determining the 

minimum free energy of the system. One can expect a 

certain influence of other topological parameters, 

including fractal dimensions of higher orders, mutual 

arrangement of fractal regions, etc. 

 

9. Conclusions 
 

The main mechanism leading to the fractal shape of new 

phase inclusions during the metal-insulator transition in 

VO2 films has been revealed. It consists in the fact  

that the inclusions of a new phase with a fractal shape  

of the boundary significantly reduce (down to zero)  

the elastic stress in their vicinity, thereby reducing the 

elastic energy of the system. Although topologically 

complex interphase boundaries are formed at this, their 

contribution to the total free energy of the system is small 

due to their small specific interphase energy. This is a 

characteristic feature of coherent boundaries between the  
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monoclinic and rutile phases. We have presented the data 

on the topology of the VO2 films, which are compared 

with the temperature dependences of the resistivity of 

these films R(T) in the vicinity of MIT. It is shown that in 

our case the topology, morphology and texture of the 

film noticeably affect the value of the hysteresis R(T). 

Based on the literature data, we have attempted to relate 

the structural parameters of the films to their electrical 

characteristics based on the fractal dimension of the film 

structural elements. To determine the fractal dimension 

from images, we used both the well-known Gwyddion 

software as well as the author’s own development, which 

showed the best results on the test images. It turned out 

that the investigated VO2 films demonstrated fractal 

dimensions of the boundaries of their constituent 

structural elements in the range of 1.4 to 1.5 and higher. 

This kind of a “non-Euclidean” shape of both nuclei 

of the new phase and film grains testifies the dominant 

role of elastic stress during MIT. This fact was verified 

by numerical modeling of elastic fields in the vicinity of 

inclusions with quasi-fractal boundaries. The modeling 

was carried out using the COMSOL Multiphysics 

software. It was shown that the elements with fractal 

boundaries as well as the fractals consisting of suitably 

arranged Euclidean figures (e.g., lenses) with 

hierarchically decreasing dimensions fully or partially 

relax elastic stress in the vicinity of the inclusion, 

facilitating phase transition. Based on these results, we 

have proposed an analytical model that allowed us to 

relate the free energy of the film F to the fractal dimen-

sion D of the structural elements of its components. It is 

shown that depending on the ratio between the elastic 

and interface specific energies, the position of the free 

energy minimum F(D) is defined by a certain optimal 

fractal dimension. The depth of the energy minimum also 

varies making the phase more stable at higher fractal 

dimensions. It follows from the model, in particular, that 

at a certain threshold ratio between the specific elastic 

and interphase energies, formation of stable fractal nuclei 

with the dimension of the boundary D > 1 is 

fundamentally impossible. Therefore, such nucleation in 

VO2 during MIT is a unique feature of this material, 

which is caused by the small value of the interface 

energy and the presence of coherent boundaries between 

the metallic and dielectric phases (Figs 12–14). This 

conclusion explains well the experimentally observed 

relationship between the morphology of vanadium 

dioxide films and the features of the hysteresis loop on 

the R(T) dependence. It significantly extends the concept 

of the nature and mechanism of the influence of the 

structure and morphology of VO2 films on the MIT 

parameters proposed earlier in [19–22]. 
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Дослідження природи фрактальності в плівках VO2 та її впливу на фазовий перехід метал-ізолятор 

 

A.A. Єфремов, Б.М. Романюк, В.П. Мельник, O.A. Стадник, T.M. Сабов, O.A. Кульбачинський, 

O.В. Дубіковський 

 

Анотація. Обговорено механізми, які лежать в основі виникнення фрактальної форми включень нової фази у 

плівках VO2 під час фазового переходу метал-ізолятор. Отримані результати показують, що гістерезис 

температурної залежності опору R(T) суттєво залежить від морфології та текстури плівки. Окрім цього 

спостерігаються деякі фрактальні особливості. Для визначення фрактальної розмірності D структурних 

елементів досліджуваних плівок за їхніми зображеннями було попередньо порівняно й обговорено різні 

підходи до фрактального аналізу. В результаті обробки зображень плівок було встановлено, що межі 

структурних елементів мають фрактальну розмірність від 1.3 до 1.5 і вище та корелюють з формою R(T). 

Фрактальні межі вказують на домінуючу роль пружних напружень у фазовому переході плівок, що 

підтверджено чисельним моделюванням. На основі цих результатів запропоновано аналітичну модель, яка 

пов’язує вільну енергію плівки з фрактальною розмірністю її складових. Залежно від співвідношення пружної 

та міжфазної питомих енергій положення мінімуму вільної енергії F відповідає певній фрактальній розмірності 

D. Малі значення міжфазної енергії приводять до більшої фрактальної розмірності, що робить початкову фазу 

більш стабільною. Цей висновок добре пояснює всі ефекти, що спостерігаються експериментально у VO2. 

Отримані результати дають змогу краще зрозуміти вплив структури і морфології на інші властивості 

досліджуваних плівок. 

 

Ключові слова: фазовий перехід метал-ізолятор, VO2 плівки, чисельне моделювання. 


