Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 004-009 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.004
References
1. Alivisatos A.P. Semiconductor clusters,
nanocrystals, and quantum dots. Science. 1996. 271.
P. 933-937.
https://doi.org/10.1126/science.271.5251.933
2. Mekuye B., Abera B. Nanomaterials: An overview
of synthesis, classification, characterization, and
applications. Nano Select. 2023. 4. P. 486-501.
https://doi.org/10.1002/nano.202300038
3. Golovynskyi S. Nanomaterials for optoelectronics: an
overview. Ukr. J. Phys. Opt. 2024. 25. P. 01045-01053.
https://doi.org/10.3116/16091833/24/5/s1/2023
4. Garc?a de Arquer, F.P. Talapin, D.V. Klimov, V.I.
et al. Semiconductor quantum dots: Technological
progress and future challenges. Science. 2021. 373.
No 6555. https://doi.org/10.1126/science.aaz8541
5. Rabouw F.T., de Mello Donega C. Excited-state
dynamics in colloidal semiconductor nanocrystals.
Top. Curr. Chem. 2016. 374. P. 58.
https://doi.org/10.1007/s41061-016-0060-0
SPQEO, 2025. V. 28, No 1. P. 004-009.
Belyaev A., Maksimenko Z., Golovynskyi S., Kravchenko V.M., Smertenko P. Semiconductor nanomaterials…
007
6. Doneg? C.d.M. Synthesis and properties of
colloidal heteronanocrystals. Chem. Soc. Rev. 2011.
40. P. 1512-1546.
https://doi.org/10.1039/c0cs00055h
7. Ngo V.T., Lim S.Y., Law C.S. et al. Semiconductor
nanoporous anodic alumina photonic crystals as a
model photoelectrocatalytic platform for solar
light-driven reactions. Adv. Energ. Sust. Res. 2024.
5. P. 2400125.
https://doi.org/10.1002/aesr.202400125
8. Zhao H., Rosei F. Colloidal quantum dots for solar
technologies. Chem. 2017. 3. P. 229-258.
https://doi.org/10.1016/j.chempr.2017.07.007
9. Liu M., Yazdani N., Yarema M.; Jansen M., Wood
V., Sargent E.H. Colloidal quantum dot electronics.
Nat. Electron. 2021. 4. P. 548-558.
https://doi.org/10.1038/s41928-021-00632-7
10. Han H.-V., Lin C.-C., Tsai Y.-L. et al. A highly
efficient hybrid GaAs solar cell based on colloidal-
quantum-dot-sensitization. Sci. Rep. 2014. 4. No
5734. https://doi.org/10.1038/srep05734
11. Ahmad W., He J., Liu Z. et al. Lead selenide (PbSe)
colloidal quantum dot solar cells with >10% efficiency.
Adv. Mater. 2019. 31. No 1900593.
https://doi.org/10.1002/adma.201900593
12. Zhao J., Chen L., Li D. et al. Large-area patterning
of full-color quantum dot arrays beyond 1000 pixels
per inch by selective electrophoretic deposition.
Nat. Commun. 2021. 12. No 4603.
https://doi.org/10.1038/s41467-021-24931-x
13. Rudko G.Y. et al. Optically detected magnetic
resonance study of relaxation/emission processes in the
nanoparticle-polymer composite. SPQEO. 2019. 22. P.
310-318. https://doi.org/10.15407/spqeo22.03.310
14. Pylypova O.V., Korbutyak D.V., Tokarev V.S. et al.
Composite polymer films with semiconductor
nanocrystals for organic electronics and optoelectronics.
SPQEO. 2024. 27. P. 208-215.
https://doi.org/10.15407/spqeo27.02.208
15. Rose M.M., Christy R.S., Benitta T.A., Kumaran
J.T.T. Phase transition and comparative study of
Cu x Cd 1-x S (x = 0.8, 0.6, 0.4, and 0.2) nanoparticle
system. SPQEO. 2024. 27. P. 176-183.
https://doi.org/10.15407/spqeo27.02.176
16. Kupchak I.M. et al. Metal vacancies in Cd 1-x Zn x S
quantum dots. SPQEO. 2020. 23. P. 066-070.
https://doi.org/10.15407/spqeo23.01.066
17. Kapush O.A., Boruk S.D., Boruk O.S. et al. Effect of
the nature of dispersion medium on the CdTe/TGA
nanocrystal formation in colloidal solutions and
polymeric membranes. SPQEO. 2020. 23. P. 160-167.
https://doi.org/10.15407/spqeo23.02.160
18. Shkrebtii A.I. et al. Impact of semiconductor
quantum dots bandgap on reabsorption in
luminescent concentrator. SPQEO. 2018. 21. P.
58-64. https://doi.org/10.15407/spqeo21.01.058
19. Kulish M.R., Kostylyov V.P., Sachenko A.V. et al.
Influence of the quantum dots bandgap and their
dispersion on the loss of luminescent quanta.
SPQEO. 2020. 23. P. 155-159.
https://doi.org/10.15407/spqeo23.02.155
20. Vella Durai S.C., Kumar E., Indira R. Green route
to prepare zinc oxide nanoparticles using Moringa
oleifera leaf extracts and their structural, optical and
impedance spectral properties. SPQEO. 2024. 27. P.
064-069. https://doi.org/10.15407/spqeo27.01.064
21. Pratheepa M.I., Lawrence M. Conversion of
Lagenaria Siceraria peel to reduced graphene oxide
doped with zinc oxide nanoparticles for
supercapacitor applications. SPQEO. 2021. 24. P.
115-123. https://doi.org/10.15407/spqeo24.02.115
22. Amrin M.I., Roshan M.M., SaiGowri R., Vella Durai
S.C. Green synthesis of silver oxide nanoparticles
using Trigonella foenum-graecum leaf extract and
their characterization. SPQEO. 2024. 27. P. 162-168.
https://doi.org/10.15407/spqeo27.02.162
23. Dharmarajan P., Sathishkumar P., Gracelin Juliana
S. et al. Phytosynthesis of titanium dioxide
nanoparticles using Cynodon dactylon leaf extract
and their antibacterial activity. SPQEO. 2024. 27. P.
287-293. https://doi.org/10.15407/spqeo27.03.287
24. Gudenko J.M., Pylypchuk O.S., Vainberg V.V. et
al. Ferroelectric nanoparticles in liquid crystals:
Role of ionic transport at small nanoparticle
concentrations. SPQEO. 2025. 28. 1. P.010-018.
https://doi.org/10.15407/spqeo28.01.010
25. Algidsawi A.J.K., Hashim A. et al. Exploring the
characteristics of SnO 2 nanoparticles doped organic blend
for low cost nanoelectronics applications. SPQEO. 2021.
24. P. 472-477. https://doi.org/10.15407/spqeo24.04.472
26. Karachevtseva L.A., Lytvynenko O.O. High-
coherent oscillations in IR spectra of macroporous
silicon with nanocoatings. SPQEO. 2020. 23. P.
316-322. https://doi.org/10.15407/spqeo23.03.316
27. Michailovska K.V., Indutnyi I.Z., Shepeliavyi P.E.
et al. Luminescent and Raman study of nanostruc-
tures formed upon annealing of SiOx:Sm films.
SPQEO. 2023. 26. P. 068-075.
https://doi.org/10.15407/spqeo26.01.068
28. Savchenko D.V., Memon V.S., Vasin A.V. et al.
EPR study of paramagnetic centers in SiO2:C: Zn
nanocomposites obtained by infiltration of fumed
silica with luminescent Zn(acac)2 solution. SPQEO.
2021. 24. P. 124-130.
https://doi.org/10.15407/spqeo24.02.124
29. Lysiuk V.O. et al. Magneto-optical properties of
nanocomposites (Co 41 Fe 39 B 20 ) õ (SiO 2 ) 100-õ . SPQEO. 2020.
23. P. 180-185. https://doi.org/10.15407/spqeo23.02.180
30. Goriachko A.M., Strikha M.V. Nanostructured SiC
as a promising material for the cold electron
emitters. SPQEO. 2021. 24. P. 335-361.
https://doi.org/10.15407/spqeo24.04.355
31. Melnik V.P., Popov V.G., Romanyuk et al.
Luminescent properties of the structures with
embedded silicon nanoclusters: Influence of
technology, doping and annealing (Review).
SPQEO. 2023. 26. P. 278-302.
https://doi.org/10.15407/spqeo26.03.278
32. Michler P., Kiraz A., Becher C. et al. A quantum
dot single-photon turnstile device. Science. 2000.
SPQEO, 2025. V. 28, No 1. P. 004-009.
Belyaev A., Maksimenko Z., Golovynskyi S., Kravchenko V.M., Smertenko P. Semiconductor nanomaterials…
008
290. No 5500. P. 2282-2285.
https://doi.org/10.11265/science.290.5500.22
33. Semenova E.S., Zhukov A.E., Mikhrin et al.
Metamorphic growth for application in long-
wavelength (1.3-1.55 ?m) lasers and MODFET-
type structures on GaAs substrates.
Nanotechnology. 2004. 15. S283-S287.
https://doi.org/10.1088/0957-4484/15/4/031
34. Golovynskyi S., Datsenko O., Seravalli L. et al.
Near-infrared lateral photoresponse in
InGaAs/GaAs quantum dots. Semicond. Sci.
Technol. 2020. 35. No 055029.
https://doi.org/10.1088/1361-6641/ab7774
35. Seravalli L. Metamorphic InAs/InGaAs quantum
dots for optoelectronic devices: A review.
Microelectron. Eng. 2023. 276. No 111996.
https://doi.org/10.1016/j.mee.2023.111996
36. Liu Z., Lin C.-H., Hyun B.-R. et al. Micro-light-
emitting diodes with quantum dots in display
technology. Light Sci. Appl. 2020. 9. No 83.
https://doi.org/10.1038/s41377-020-0268-1
37. Kwoen J., Imoto T., Arakawa Y. InAs/InGaAs
quantum dot lasers on multi-functional
metamorphic buffer layers. Opt. Express. 2021. 29.
No 29378. https://doi.org/10.1364/oe.433030
38. Iliash S.A., Kondratenko S.V., Yakovliev, A. et al.
Thermally stimulated conductivity in InGaAs/GaAs
quantum wire heterostructures. SPQEO. 2016. 19.
P. 75-78. https://doi.org/10.15407/spqeo19.01.075
39. Datsenko O.I., Kravchenko V.M., Golovynskyi S.
Electron levels of defects in In(Ga)As/(In)GaAs
nanostructures: A review. SPQEO. 2024. 27. P.
194-207. https://doi.org/10.15407/spqeo27.02.194
40. Yang P., Yan, R., Fardy M. Semiconductor
Nanowire: What’s Next? Nano Lett. 2010. 10.
P. 1529-1536. https://doi.org/10.1021/nl100665r
41. Hsu Y.F., Xi Y.Y., Djuri?i? A.B., Chan W.K. ZnO
nanorods for solar cells: Hydrothermal growth
versus vapor deposition. Appl. Phys. Lett. 2008. 92.
No 133507. https://doi.org/10.1063/1.2906370
42. Wen S., Liu Y., Wang F. et al. Nanorods with
multidimensional optical information beyond the
diffraction limit. Nat. Commun. 2020. 11. No 6047.
https://doi.org/10.1038/s41467-020-19952-x
43. Wang J., Liu L., Chen S. et al. Growth of 1D
nanorod perovskite for surface passivation in
FAPbI 3 perovskite solar cells. Small. 2021. 18. No
2104100. https://doi.org/10.1002/smll.202104100
44. Laumier S., Farrow T., van Zalinge H. et al.
Selection and functionalization of germanium
nanowires for bio-sensing. ACS Omega. 2022. 7. P.
35288-35296.
https://doi.org/10.1021/acsomega.2c04775
45. Bogoslovska A.B., Grynko D.O., Bortchagovsky
E.G. Influence of sulfurization on optical properties
of CdS nanocrystals. SPQEO. 2023. 26. P.
442-449. https://doi.org/10.15407/spqeo26.04.442
46. Dusheiko M.G., Koval V.M., Obukhova T.Y. Silicon
nanowire arrays synthesized using the modified
MACE process: Integration into chemical sensors and
solar cells. SPQEO. 2022. 25. Ð. 058-067.
https://doi.org/10.15407/spqeo25.01.058
47. Klimovskaya A.I. et al. Growth of silicon self-
assembled nanowires by using gold-enhanced CVD
technology. SPQEO. 2018. 21. Ð. 282-287.
https://doi.org/10.15407/spqeo21.03.282
48. Klimovskaya A.I. et al. Mechanical strain in the
structure of array of silicon nanowires grown on a
silicon substrate. SPQEO. 2019. 22. Ð. 293-298.
https://doi.org/10.15407/spqeo22.03.293
49. Bogoslovska A.B., Grynko D.O., Bortchagovsky E.G.
Luminescent properties of cadmium sulfide
nanocrystals grown from gas phase. SPQEO. 2022. 25.
413-421. https://doi.org/10.15407/spqeo25.04.413
50. Bogoslovskaya A.B. et al. Luminescent analysis of
the quality of CdS nanocrystals depending on
technological parameters. SPQEO. 2019. 22.
231-236. https://doi.org/10.15407/spqeo22.02.231
51. Holonyak N., Kolbas R., Dupuis R., Dapkus P.
Quantum-well heterostructure lasers. IEEE J.
Quantum Electron. 1980. 16. 170-186,
https://doi.org/10.1109/jqe.1980.1070447
52. Krispin P., Lazzari J.L., Kostial H. Deep and
shallow electronic states at ultrathin InAs insertions
in GaAs investigated by capacitance spectroscopy.
J. Appl. Phys. 1998. 84. 6135-6140,
https://doi.org/10.1063/1.368927
53. Vinoslavskii M.M. et al. Current and
electroluminescence intensity oscillations under bipolar
lateral electric transport in the double-
GaAs/InGaAs/GaAs quantum wells. SPQEO. 2018. 21.
Ð.256-262. https://doi.org/10.15407/spqeo21.03.256
54. Budnyk O.P. et al. Spectral features of pristine and
irradiated white emitting InGaN LEDs with
quantum wells. SPQEO 2024. 27. Ð.235-241.
https://doi.org/10.15407/spqeo27.02.235
55. Venger E.F., Morozhenko V.O. Narrow-band
controllable sources of IR emission based on one-
dimensional magneto-optical photonic structures.
SPQEO. 2023. 26. Ð.180-187.
https://doi.org/10.15407/spqeo26.02.180
56. Fedorenko A.V., Bozhko K.M., Kachur N.V. et al.
Optical and electrical properties of zinc oxide
nanofilms deposited using the sol-gel method.
SPQEO. 2024. 27. Ð.117-123.
https://doi.org/10.15407/spqeo27.01.117
57. Dounia F., Bhandari M.P., Golovynskyi S. et al.
Increasing the efficiency of CIGS solar cells due to the
reduced graphene oxide field layer of the back surface.
SPQEO. 2024. 27. Ð. 337-347.
https://doi.org/10.15407/spqeo27.03.337
58. Esposito F., Bosi M., Attolini G. et al. Two-
dimensional MoS 2 for photonic applications.
SPQEO. 2025. 28. P. 037-046.
https://doi.org/10.15407/spqeo28.01.037
| |
|
|