Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 004-009 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.004


References


1. Alivisatos A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996. 271. P. 933-937. https://doi.org/10.1126/science.271.5251.933
2. Mekuye B., Abera B. Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Select. 2023. 4. P. 486-501. https://doi.org/10.1002/nano.202300038
3. Golovynskyi S. Nanomaterials for optoelectronics: an overview. Ukr. J. Phys. Opt. 2024. 25. P. 01045-01053. https://doi.org/10.3116/16091833/24/5/s1/2023
4. Garc?a de Arquer, F.P. Talapin, D.V. Klimov, V.I. et al. Semiconductor quantum dots: Technological progress and future challenges. Science. 2021. 373. No 6555. https://doi.org/10.1126/science.aaz8541
5. Rabouw F.T., de Mello Donega C. Excited-state dynamics in colloidal semiconductor nanocrystals. Top. Curr. Chem. 2016. 374. P. 58. https://doi.org/10.1007/s41061-016-0060-0 SPQEO, 2025. V. 28, No 1. P. 004-009. Belyaev A., Maksimenko Z., Golovynskyi S., Kravchenko V.M., Smertenko P. Semiconductor nanomaterials… 007
6. Doneg? C.d.M. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 2011.
40. P. 1512-1546. https://doi.org/10.1039/c0cs00055h
7. Ngo V.T., Lim S.Y., Law C.S. et al. Semiconductor nanoporous anodic alumina photonic crystals as a model photoelectrocatalytic platform for solar light-driven reactions. Adv. Energ. Sust. Res. 2024.
5. P. 2400125. https://doi.org/10.1002/aesr.202400125
8. Zhao H., Rosei F. Colloidal quantum dots for solar technologies. Chem. 2017. 3. P. 229-258. https://doi.org/10.1016/j.chempr.2017.07.007
9. Liu M., Yazdani N., Yarema M.; Jansen M., Wood V., Sargent E.H. Colloidal quantum dot electronics. Nat. Electron. 2021. 4. P. 548-558. https://doi.org/10.1038/s41928-021-00632-7
10. Han H.-V., Lin C.-C., Tsai Y.-L. et al. A highly efficient hybrid GaAs solar cell based on colloidal- quantum-dot-sensitization. Sci. Rep. 2014. 4. No
5734. https://doi.org/10.1038/srep05734
11. Ahmad W., He J., Liu Z. et al. Lead selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency. Adv. Mater. 2019. 31. No 1900593. https://doi.org/10.1002/adma.201900593
12. Zhao J., Chen L., Li D. et al. Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nat. Commun. 2021. 12. No 4603. https://doi.org/10.1038/s41467-021-24931-x
13. Rudko G.Y. et al. Optically detected magnetic resonance study of relaxation/emission processes in the nanoparticle-polymer composite. SPQEO. 2019. 22. P. 310-318. https://doi.org/10.15407/spqeo22.03.310
14. Pylypova O.V., Korbutyak D.V., Tokarev V.S. et al. Composite polymer films with semiconductor nanocrystals for organic electronics and optoelectronics. SPQEO. 2024. 27. P. 208-215. https://doi.org/10.15407/spqeo27.02.208
15. Rose M.M., Christy R.S., Benitta T.A., Kumaran J.T.T. Phase transition and comparative study of Cu x Cd 1-x S (x = 0.8, 0.6, 0.4, and 0.2) nanoparticle system. SPQEO. 2024. 27. P. 176-183. https://doi.org/10.15407/spqeo27.02.176
16. Kupchak I.M. et al. Metal vacancies in Cd 1-x Zn x S quantum dots. SPQEO. 2020. 23. P. 066-070. https://doi.org/10.15407/spqeo23.01.066
17. Kapush O.A., Boruk S.D., Boruk O.S. et al. Effect of the nature of dispersion medium on the CdTe/TGA nanocrystal formation in colloidal solutions and polymeric membranes. SPQEO. 2020. 23. P. 160-167. https://doi.org/10.15407/spqeo23.02.160
18. Shkrebtii A.I. et al. Impact of semiconductor quantum dots bandgap on reabsorption in luminescent concentrator. SPQEO. 2018. 21. P. 58-64. https://doi.org/10.15407/spqeo21.01.058
19. Kulish M.R., Kostylyov V.P., Sachenko A.V. et al. Influence of the quantum dots bandgap and their dispersion on the loss of luminescent quanta. SPQEO. 2020. 23. P. 155-159. https://doi.org/10.15407/spqeo23.02.155
20. Vella Durai S.C., Kumar E., Indira R. Green route to prepare zinc oxide nanoparticles using Moringa oleifera leaf extracts and their structural, optical and impedance spectral properties. SPQEO. 2024. 27. P. 064-069. https://doi.org/10.15407/spqeo27.01.064
21. Pratheepa M.I., Lawrence M. Conversion of Lagenaria Siceraria peel to reduced graphene oxide doped with zinc oxide nanoparticles for supercapacitor applications. SPQEO. 2021. 24. P. 115-123. https://doi.org/10.15407/spqeo24.02.115
22. Amrin M.I., Roshan M.M., SaiGowri R., Vella Durai S.C. Green synthesis of silver oxide nanoparticles using Trigonella foenum-graecum leaf extract and their characterization. SPQEO. 2024. 27. P. 162-168. https://doi.org/10.15407/spqeo27.02.162
23. Dharmarajan P., Sathishkumar P., Gracelin Juliana S. et al. Phytosynthesis of titanium dioxide nanoparticles using Cynodon dactylon leaf extract and their antibacterial activity. SPQEO. 2024. 27. P. 287-293. https://doi.org/10.15407/spqeo27.03.287
24. Gudenko J.M., Pylypchuk O.S., Vainberg V.V. et al. Ferroelectric nanoparticles in liquid crystals: Role of ionic transport at small nanoparticle concentrations. SPQEO. 2025. 28. 1. P.010-018. https://doi.org/10.15407/spqeo28.01.010
25. Algidsawi A.J.K., Hashim A. et al. Exploring the characteristics of SnO 2 nanoparticles doped organic blend for low cost nanoelectronics applications. SPQEO. 2021.
24. P. 472-477. https://doi.org/10.15407/spqeo24.04.472
26. Karachevtseva L.A., Lytvynenko O.O. High- coherent oscillations in IR spectra of macroporous silicon with nanocoatings. SPQEO. 2020. 23. P. 316-322. https://doi.org/10.15407/spqeo23.03.316
27. Michailovska K.V., Indutnyi I.Z., Shepeliavyi P.E. et al. Luminescent and Raman study of nanostruc- tures formed upon annealing of SiOx:Sm films. SPQEO. 2023. 26. P. 068-075. https://doi.org/10.15407/spqeo26.01.068
28. Savchenko D.V., Memon V.S., Vasin A.V. et al. EPR study of paramagnetic centers in SiO2:C: Zn nanocomposites obtained by infiltration of fumed silica with luminescent Zn(acac)2 solution. SPQEO.
2021. 24. P. 124-130. https://doi.org/10.15407/spqeo24.02.124
29. Lysiuk V.O. et al. Magneto-optical properties of nanocomposites (Co 41 Fe 39 B 20 ) õ (SiO 2 ) 100-õ . SPQEO. 2020.
23. P. 180-185. https://doi.org/10.15407/spqeo23.02.180
30. Goriachko A.M., Strikha M.V. Nanostructured SiC as a promising material for the cold electron emitters. SPQEO. 2021. 24. P. 335-361. https://doi.org/10.15407/spqeo24.04.355
31. Melnik V.P., Popov V.G., Romanyuk et al. Luminescent properties of the structures with embedded silicon nanoclusters: Influence of technology, doping and annealing (Review). SPQEO. 2023. 26. P. 278-302. https://doi.org/10.15407/spqeo26.03.278
32. Michler P., Kiraz A., Becher C. et al. A quantum dot single-photon turnstile device. Science. 2000. SPQEO, 2025. V. 28, No 1. P. 004-009. Belyaev A., Maksimenko Z., Golovynskyi S., Kravchenko V.M., Smertenko P. Semiconductor nanomaterials… 008
290. No 5500. P. 2282-2285. https://doi.org/10.11265/science.290.5500.22
33. Semenova E.S., Zhukov A.E., Mikhrin et al. Metamorphic growth for application in long- wavelength (1.3-1.55 ?m) lasers and MODFET- type structures on GaAs substrates. Nanotechnology. 2004. 15. S283-S287. https://doi.org/10.1088/0957-4484/15/4/031
34. Golovynskyi S., Datsenko O., Seravalli L. et al. Near-infrared lateral photoresponse in InGaAs/GaAs quantum dots. Semicond. Sci. Technol. 2020. 35. No 055029. https://doi.org/10.1088/1361-6641/ab7774
35. Seravalli L. Metamorphic InAs/InGaAs quantum dots for optoelectronic devices: A review. Microelectron. Eng. 2023. 276. No 111996. https://doi.org/10.1016/j.mee.2023.111996
36. Liu Z., Lin C.-H., Hyun B.-R. et al. Micro-light- emitting diodes with quantum dots in display technology. Light Sci. Appl. 2020. 9. No 83. https://doi.org/10.1038/s41377-020-0268-1
37. Kwoen J., Imoto T., Arakawa Y. InAs/InGaAs quantum dot lasers on multi-functional metamorphic buffer layers. Opt. Express. 2021. 29. No 29378. https://doi.org/10.1364/oe.433030
38. Iliash S.A., Kondratenko S.V., Yakovliev, A. et al. Thermally stimulated conductivity in InGaAs/GaAs quantum wire heterostructures. SPQEO. 2016. 19. P. 75-78. https://doi.org/10.15407/spqeo19.01.075
39. Datsenko O.I., Kravchenko V.M., Golovynskyi S. Electron levels of defects in In(Ga)As/(In)GaAs nanostructures: A review. SPQEO. 2024. 27. P. 194-207. https://doi.org/10.15407/spqeo27.02.194
40. Yang P., Yan, R., Fardy M. Semiconductor Nanowire: What’s Next? Nano Lett. 2010. 10. P. 1529-1536. https://doi.org/10.1021/nl100665r
41. Hsu Y.F., Xi Y.Y., Djuri?i? A.B., Chan W.K. ZnO nanorods for solar cells: Hydrothermal growth versus vapor deposition. Appl. Phys. Lett. 2008. 92. No 133507. https://doi.org/10.1063/1.2906370
42. Wen S., Liu Y., Wang F. et al. Nanorods with multidimensional optical information beyond the diffraction limit. Nat. Commun. 2020. 11. No 6047. https://doi.org/10.1038/s41467-020-19952-x
43. Wang J., Liu L., Chen S. et al. Growth of 1D nanorod perovskite for surface passivation in FAPbI 3 perovskite solar cells. Small. 2021. 18. No
2104100. https://doi.org/10.1002/smll.202104100
44. Laumier S., Farrow T., van Zalinge H. et al. Selection and functionalization of germanium nanowires for bio-sensing. ACS Omega. 2022. 7. P. 35288-35296. https://doi.org/10.1021/acsomega.2c04775
45. Bogoslovska A.B., Grynko D.O., Bortchagovsky E.G. Influence of sulfurization on optical properties of CdS nanocrystals. SPQEO. 2023. 26. P. 442-449. https://doi.org/10.15407/spqeo26.04.442
46. Dusheiko M.G., Koval V.M., Obukhova T.Y. Silicon nanowire arrays synthesized using the modified MACE process: Integration into chemical sensors and solar cells. SPQEO. 2022. 25. Ð. 058-067. https://doi.org/10.15407/spqeo25.01.058
47. Klimovskaya A.I. et al. Growth of silicon self- assembled nanowires by using gold-enhanced CVD technology. SPQEO. 2018. 21. Ð. 282-287. https://doi.org/10.15407/spqeo21.03.282
48. Klimovskaya A.I. et al. Mechanical strain in the structure of array of silicon nanowires grown on a silicon substrate. SPQEO. 2019. 22. Ð. 293-298. https://doi.org/10.15407/spqeo22.03.293
49. Bogoslovska A.B., Grynko D.O., Bortchagovsky E.G. Luminescent properties of cadmium sulfide nanocrystals grown from gas phase. SPQEO. 2022. 25. 413-421. https://doi.org/10.15407/spqeo25.04.413
50. Bogoslovskaya A.B. et al. Luminescent analysis of the quality of CdS nanocrystals depending on technological parameters. SPQEO. 2019. 22. 231-236. https://doi.org/10.15407/spqeo22.02.231
51. Holonyak N., Kolbas R., Dupuis R., Dapkus P. Quantum-well heterostructure lasers. IEEE J. Quantum Electron. 1980. 16. 170-186, https://doi.org/10.1109/jqe.1980.1070447
52. Krispin P., Lazzari J.L., Kostial H. Deep and shallow electronic states at ultrathin InAs insertions in GaAs investigated by capacitance spectroscopy. J. Appl. Phys. 1998. 84. 6135-6140, https://doi.org/10.1063/1.368927
53. Vinoslavskii M.M. et al. Current and electroluminescence intensity oscillations under bipolar lateral electric transport in the double- GaAs/InGaAs/GaAs quantum wells. SPQEO. 2018. 21. Ð.256-262. https://doi.org/10.15407/spqeo21.03.256
54. Budnyk O.P. et al. Spectral features of pristine and irradiated white emitting InGaN LEDs with quantum wells. SPQEO 2024. 27. Ð.235-241. https://doi.org/10.15407/spqeo27.02.235
55. Venger E.F., Morozhenko V.O. Narrow-band controllable sources of IR emission based on one- dimensional magneto-optical photonic structures. SPQEO. 2023. 26. Ð.180-187. https://doi.org/10.15407/spqeo26.02.180
56. Fedorenko A.V., Bozhko K.M., Kachur N.V. et al. Optical and electrical properties of zinc oxide nanofilms deposited using the sol-gel method. SPQEO. 2024. 27. Ð.117-123. https://doi.org/10.15407/spqeo27.01.117
57. Dounia F., Bhandari M.P., Golovynskyi S. et al. Increasing the efficiency of CIGS solar cells due to the reduced graphene oxide field layer of the back surface. SPQEO. 2024. 27. Ð. 337-347. https://doi.org/10.15407/spqeo27.03.337
58. Esposito F., Bosi M., Attolini G. et al. Two- dimensional MoS 2 for photonic applications. SPQEO. 2025. 28. P. 037-046. https://doi.org/10.15407/spqeo28.01.037