Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 026-032 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.026


References


1. Laqibi M., Cros B., Peytavin S., Ribes M. New silver superionic conductors Ag 7 XY 5 Z (X = Si, Ge, Sn; Y = S, Se; Z = Cl, Br, I)-synthesis and electrical studies. Solid State Ionics. 1987. 23. P. 21-26. https://doi.org/10.1016/0167-2738(87)90077-4
2. Yugami H., Ishigame M. Fundamental physics and promising applications of superionic conductors. Jpn. J. Appl. Phys. 1993. 32, No 2. P. 853-859. https://doi.org/10.1143/jjap.32.853
3. Zhang Z., Shao Y., Lotsch B. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 2018. 11. P. 1945-1976. https://doi.org/10.1039/C8EE01053F
4. Romaka V.V., Romaka V.A., Stadnyk Y.V. et al. Features of mechanisms of electrical conductivity in semiconductive solid solution Lu 1-x Sc x NiSb. Ukr. J. Phys. 2022. 67. P. 370-379. https://doi.org/10.15407/ujpe67.5.370
5. Chen Y., Wen K., Chen T. et al. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Mater. 2020. 31. P. 401-433. https://doi.org/10.1016/j.ensm.2020.05.019
6. Balkanski M. Applications of Superionic Conductors in Microbatteries and Elsewhere. In: Atomic Diffusion in Disordered Materials: Theory and Applications. Eds. Balkanski M., Elliott R. World Scientific, 1998. P. 239-295. https://doi.org/10.1142/9789812817327_0006
7. Zhang Z., Zhang L., Liu Y. et al. Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries. J. Alloys Compd.
2018. 747. P. 227-235. https://doi.org/10.1016/j.jallcom.2018.03.027
8. Cheng Å.J., Yang T., Liu Y. et al. Correlation between mechanical properties and ionic conduc- tivity of sodium superionic conductors: a relative density-dependent relationship. Materials Today Energy. 2024. 44. P. 101644. https://doi.org/10.1016/j.mtener.2024.101644
9. Yan G., Yu S., Nonemacher J.F. et al. Influence of sintering temperature on conductivity and mechanical behavior of the solid electrolyte LATP. Ceram. Int. 2019. 45, No 12. P. 14697-14703. https://doi.org/10.1016/j.ceramint.2019.04.191
10. Zong Z., Lou J., Adewoye O.O. et al. Indentation size effects in the nano and microhardness of FCC single crystal metals. Mater. Manuf. Process. 2007. 22, No 2. P. 228-237. https://doi.org/10.1080/10426910601063410
11. Microelectromechanical Structures for Materials Research. Eds. Brown S., Gilbert J., Guckel H. et al. Mater. Res. Soc. Proc. 1998. 518.
12. Nonemacher J.F., Naqash S., Tietz F., Malzbender J. Micromechanical assessment of Al/Y-substituted NASICON solid electrolytes. Ceram. Int. 2019. 45, No 17, Part A. P. 21308-21314. https://doi.org/10.1016/j.ceramint.2019.07.114
13. Pogodin A.I., Filep M.J., Malakhovska T.O. et al. Microstructural, mechanical and electrical properties of superionic Ag 6+x (P 1-x Ge x )S 5 I ceramic materials. J. Phys. Chem. Sol. 2022. 171. P. 111042. https://doi.org/10.1016/j.jpcs.2022.111042
14. Wang A.N., Nonemacher J.F., Yan G. et al. Mechanical properties of the solid electrolyte Al-substituted Li 7 La 3 Zr 2 O 12 (LLZO) by utilizing micro-pillar indentation splitting test. J. Eur. Ceram. Soc. 2018. 38. P. 3201-3209. https://doi.org/10.1016/j.jeurceramsoc.2018.02.032
15. Ke X., Wang Y., Ren G., Yuan C. Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries. Energy Storage Mater. 2020. 26. P. 313-324. https://doi.org/10.1016/j.ensm.2019.08.029
16. Shender I., Pogodin A., Aleksyk V. et al. Mechanical properties of single crystals based on Ag 6+x (P 1-x Ge x )S 5 I solid solutions. 2021 IEEE 12th Int. Conf. on Electronics and Information Techno- logies (ELIT), Lviv, Ukraine, 2021. P. 10-13. https://doi.org/10.1109/ELIT53502.2021.9501088
17. Shender I.O., Pogodin A.I., Filep M.J. et al. Microhardness of single-crystal samples of Ag 7+x (P 1-x Ge x )S 6 solid solutions. SPQEO. 2024. 27. P. 169-175. https://doi.org/10.15407/spqeo27.02.169
18. Shender I.O., Pogodin A.I., Filep M.J. et al. Influence of cation Si 4+ ?Ge 4+ and P 5+ ?Ge 4+ substitution on the mechanical parameters of single crystals Ag 7 (Si 1-x Ge x )S 5 I and Ag 6+x (P 1-x Ge x )S 5 I. SPQEO. 2023. 26. P. 408-414. https://doi.org/10.15407/spqeo26.04.408
19. Pogodin A., Filep M., Malakhovska T. et al. Obtaining of disordered highly ionic conductive Ag 7+x (P 1-x Si x )S 6 single crystalline materials. Mat. Res. Bull. 2024. 179. P. 112953. https://doi.org/10.1016/j.materresbull.2024.112953
20. Pogodin A.I., Filep M.J., Izai V.Yu. et al. Crystal growth and electrical conductivity of Ag 7 PS 6 and Ag 8 GeS 6 argyrodites. J. Phys. Chem. Sol. 2022.
168. P. 110828. https://doi.org/10.1016/j.jpcs.2022.110828
21. Filho P.P., Mitchell M.R., Link R.E. et al. Brinell and Vickers hardness measurement using image processing and analysis techniques. J. Test. Evaluation. 2010. 38, No 1. P. 102220. https://doi.org/10.1520/jte102220
22. Nabarro F.R., Shrivastava S., Luyckx S.B. The size effect in microindentation. Phil. Mag. 2006. 86, No 25-26. P. 4173-4180. https://doi.org/10.1080/14786430600577910
23. Benet C.J., Gnanam F.D. Vickers micromechanical indentation of NaSb 2 F 7 and Na 3 Sb 4 F 15 single crystals. 1990. 9, No 2. P. 165-166. https://doi.org/10.1007/bf00727704
24. Karaca I., B?y?kakkas S. Microhardness charac- terization of Fe- and Co-based superalloys. Iran. J. Sci. Technol. Trans. Sci. 2019. 43. P. 1311-1319. https://doi.org/10.1007/s40995-018-0604-y
25. G?der H.S., ?ahin E., ?ahin O. et al. Vickers and Knoop indentation microhardness study of ?-SiAlON ceramic. Acta Phys. Pol. A. 2011. 120. P. 1026-1033. https://doi.org/10.12693/APhysPolA.120.1026
26. Luo Q., Kitchen M. Microhardness, Indentation size effect and real hardness of plastically deformed austenitic hadfield steel. Materials. 2023. 16. P. 1117. https://doi.org/10.3390/ma16031117
27. Allen L.C. Electronegativity is the average one- electron energy of the valence-shell electrons in ground-state free atoms. J. Am. Chem. Soc. 1989. 111, No 25. P. 9003-9014. https://doi.org/10.1021/ja00207a003
28. Shannon R.D. Revised effective ionic radii and sys- tematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A. 1976. 32. P. 751-767. https://doi.org/10.1107/S0567739476001551
29. Nix W.D., Gao H. Indentation size effects in crys- talline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids. 1998. 46. P. 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0
30. Song P., Yabuuchi K., Spaetig P. Insights into har- dening, plastically deformed zone and geometrically necessary dislocations of two ion-irradiated FeCrAl(Zr)-ODS ferritic steels: A combined experimental and simulation study. Acta Mater.
2022. 234. P. 117991. https://doi.org/10.1016/j.actamat.2022.117991