Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 026-032 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.026
References
1. Laqibi M., Cros B., Peytavin S., Ribes M. New
silver superionic conductors Ag 7 XY 5 Z (X = Si, Ge,
Sn; Y = S, Se; Z = Cl, Br, I)-synthesis and electrical
studies. Solid State Ionics. 1987. 23. P. 21-26.
https://doi.org/10.1016/0167-2738(87)90077-4
2. Yugami H., Ishigame M. Fundamental physics and
promising applications of superionic conductors.
Jpn. J. Appl. Phys. 1993. 32, No 2. P. 853-859.
https://doi.org/10.1143/jjap.32.853
3. Zhang Z., Shao Y., Lotsch B. et al. New horizons
for inorganic solid state ion conductors. Energy
Environ. Sci. 2018. 11. P. 1945-1976.
https://doi.org/10.1039/C8EE01053F
4. Romaka V.V., Romaka V.A., Stadnyk Y.V. et al.
Features of mechanisms of electrical conductivity in
semiconductive solid solution Lu 1-x Sc x NiSb. Ukr. J.
Phys. 2022. 67. P. 370-379.
https://doi.org/10.15407/ujpe67.5.370
5. Chen Y., Wen K., Chen T. et al. Recent progress in
all-solid-state lithium batteries: The emerging
strategies for advanced electrolytes and their
interfaces. Energy Storage Mater. 2020. 31. P. 401-433. https://doi.org/10.1016/j.ensm.2020.05.019
6. Balkanski M. Applications of Superionic
Conductors in Microbatteries and Elsewhere. In:
Atomic Diffusion in Disordered Materials: Theory
and Applications. Eds. Balkanski M., Elliott R.
World Scientific, 1998. P. 239-295.
https://doi.org/10.1142/9789812817327_0006
7. Zhang Z., Zhang L., Liu Y. et al. Synthesis and
characterization of argyrodite solid electrolytes for
all-solid-state Li-ion batteries. J. Alloys Compd.
2018. 747. P. 227-235.
https://doi.org/10.1016/j.jallcom.2018.03.027
8. Cheng Å.J., Yang T., Liu Y. et al. Correlation
between mechanical properties and ionic conduc-
tivity of sodium superionic conductors: a relative
density-dependent relationship. Materials Today
Energy. 2024. 44. P. 101644.
https://doi.org/10.1016/j.mtener.2024.101644
9. Yan G., Yu S., Nonemacher J.F. et al. Influence of
sintering temperature on conductivity and
mechanical behavior of the solid electrolyte LATP.
Ceram. Int. 2019. 45, No 12. P. 14697-14703.
https://doi.org/10.1016/j.ceramint.2019.04.191
10. Zong Z., Lou J., Adewoye O.O. et al. Indentation
size effects in the nano and microhardness of FCC
single crystal metals. Mater. Manuf. Process. 2007.
22, No 2. P. 228-237.
https://doi.org/10.1080/10426910601063410
11. Microelectromechanical Structures for Materials
Research. Eds. Brown S., Gilbert J., Guckel H.
et al. Mater. Res. Soc. Proc. 1998. 518.
12. Nonemacher J.F., Naqash S., Tietz F., Malzbender
J. Micromechanical assessment of Al/Y-substituted
NASICON solid electrolytes. Ceram. Int. 2019. 45,
No 17, Part A. P. 21308-21314.
https://doi.org/10.1016/j.ceramint.2019.07.114
13. Pogodin A.I., Filep M.J., Malakhovska T.O. et al.
Microstructural, mechanical and electrical
properties of superionic Ag 6+x (P 1-x Ge x )S 5 I ceramic
materials. J. Phys. Chem. Sol. 2022. 171. P. 111042.
https://doi.org/10.1016/j.jpcs.2022.111042
14. Wang A.N., Nonemacher J.F., Yan G. et al.
Mechanical properties of the solid electrolyte
Al-substituted Li 7 La 3 Zr 2 O 12 (LLZO) by utilizing
micro-pillar indentation splitting test. J. Eur.
Ceram. Soc. 2018. 38. P. 3201-3209.
https://doi.org/10.1016/j.jeurceramsoc.2018.02.032
15. Ke X., Wang Y., Ren G., Yuan C. Towards rational
mechanical design of inorganic solid electrolytes for
all-solid-state lithium ion batteries. Energy Storage
Mater. 2020. 26. P. 313-324.
https://doi.org/10.1016/j.ensm.2019.08.029
16. Shender I., Pogodin A., Aleksyk V. et al.
Mechanical properties of single crystals based on
Ag 6+x (P 1-x Ge x )S 5 I solid solutions. 2021 IEEE 12th
Int. Conf. on Electronics and Information Techno-
logies (ELIT), Lviv, Ukraine, 2021. P. 10-13.
https://doi.org/10.1109/ELIT53502.2021.9501088
17. Shender I.O., Pogodin A.I., Filep M.J. et al.
Microhardness of single-crystal samples of
Ag 7+x (P 1-x Ge x )S 6 solid solutions. SPQEO. 2024. 27.
P. 169-175. https://doi.org/10.15407/spqeo27.02.169
18. Shender I.O., Pogodin A.I., Filep M.J. et al.
Influence of cation Si 4+ ?Ge 4+ and P 5+ ?Ge 4+
substitution on the mechanical parameters of single
crystals Ag 7 (Si 1-x Ge x )S 5 I and Ag 6+x (P 1-x Ge x )S 5 I.
SPQEO. 2023. 26. P. 408-414.
https://doi.org/10.15407/spqeo26.04.408
19. Pogodin A., Filep M., Malakhovska T. et al.
Obtaining of disordered highly ionic conductive
Ag 7+x (P 1-x Si x )S 6 single crystalline materials. Mat.
Res. Bull. 2024. 179. P. 112953.
https://doi.org/10.1016/j.materresbull.2024.112953
20. Pogodin A.I., Filep M.J., Izai V.Yu. et al. Crystal
growth and electrical conductivity of Ag 7 PS 6 and
Ag 8 GeS 6 argyrodites. J. Phys. Chem. Sol. 2022.
168. P. 110828.
https://doi.org/10.1016/j.jpcs.2022.110828
21. Filho P.P., Mitchell M.R., Link R.E. et al. Brinell
and Vickers hardness measurement using image
processing and analysis techniques. J. Test.
Evaluation. 2010. 38, No 1. P. 102220.
https://doi.org/10.1520/jte102220
22. Nabarro F.R., Shrivastava S., Luyckx S.B. The size
effect in microindentation. Phil. Mag. 2006. 86, No
25-26. P. 4173-4180.
https://doi.org/10.1080/14786430600577910
23. Benet C.J., Gnanam F.D. Vickers micromechanical
indentation of NaSb 2 F 7 and Na 3 Sb 4 F 15 single
crystals. 1990. 9, No 2. P. 165-166.
https://doi.org/10.1007/bf00727704
24. Karaca I., B?y?kakkas S. Microhardness charac-
terization of Fe- and Co-based superalloys. Iran. J.
Sci. Technol. Trans. Sci. 2019. 43. P. 1311-1319.
https://doi.org/10.1007/s40995-018-0604-y
25. G?der H.S., ?ahin E., ?ahin O. et al. Vickers and
Knoop indentation microhardness study of ?-SiAlON
ceramic. Acta Phys. Pol. A. 2011. 120. P. 1026-1033. https://doi.org/10.12693/APhysPolA.120.1026
26. Luo Q., Kitchen M. Microhardness, Indentation size
effect and real hardness of plastically deformed
austenitic hadfield steel. Materials. 2023. 16.
P. 1117. https://doi.org/10.3390/ma16031117
27. Allen L.C. Electronegativity is the average one-
electron energy of the valence-shell electrons in
ground-state free atoms. J. Am. Chem. Soc. 1989.
111, No 25. P. 9003-9014.
https://doi.org/10.1021/ja00207a003
28. Shannon R.D. Revised effective ionic radii and sys-
tematic studies of interatomic distances in halides
and chalcogenides. Acta Cryst. A. 1976. 32. P. 751-767. https://doi.org/10.1107/S0567739476001551
29. Nix W.D., Gao H. Indentation size effects in crys-
talline materials: A law for strain gradient plasticity.
J. Mech. Phys. Solids. 1998. 46. P. 411-425.
https://doi.org/10.1016/S0022-5096(97)00086-0
30. Song P., Yabuuchi K., Spaetig P. Insights into har-
dening, plastically deformed zone and geometrically
necessary dislocations of two ion-irradiated
FeCrAl(Zr)-ODS ferritic steels: A combined
experimental and simulation study. Acta Mater.
2022. 234. P. 117991.
https://doi.org/10.1016/j.actamat.2022.117991
| |
|
|