Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 033-036 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.033


References


1. Gainza J., Guinazu O.N., Cespedes E. et al. Tunable inversion degree of MnIn 2 S 4 thiospinels prepared by high-pressure synthesis, and its implication in the optical and magnetic properties. J. Alloys Compd.
2023. 969. Art. ID 172413. https://doi.org/10.1016/j.jallcom.2023.172413
2. Niftiyev N.N., Dashdemirov A.O., Mammadov F.M., Muradov M.B. Frequency dispersion of dielectric coefficients of MnGaInTe 4 crystals. SPQEO. 2024. 27. P. 189-193. https://doi.org/10.15407/spqeo27.02.189
3. Niftiev N.N., Dashdemirov A.O., Mamedov F.M., Muradov M.B. Dielectric properties of layered MnGaInSe 4 single crystals in an alternating electric field. Surf. Eng. Appl. Electrochem. 2023. 59. P. 644-648. https://doi.org/10.3103/S1068375523050137
4. Hwang Y., Choi J., Ha Y. et al. Electronic and optical properties of layered chalcogenide FeIn 2 Se 4 . Curr. Appl. Phys. 2020. 20. P. 212-218. https://doi.org/10.1016/j.cap.2019.11.005
5. Boledzyuk V.B., Kovalyuk Z.D., Kudrynskyi Z.R. et al. Physical properties of layered FeIn 2 Se 4 single crystals. Funct. Mater. 2016. 23. P. 557-560. https://doi.org/10.15407/fm23.04.382
6. Bodnar I.V., Osipova M.A., Rud V.Yu. et al. MSP 1P Shottky barriers on the base of MnIn 2 S 4 single crystals. Conf. “Materials Science and Condensed Matter Physics”, Chi?in?u, Moldova, 13-17 sept.
2010. P. 71.
7. Kim H., Tiwari A., Hwang E. et al. FeIn 2 S 4 nano- crystals: A ternary metal chalcogenide material for ambipolar field-effect transistors. Adv. Sci. 2018. 51. P. 800068. https://doi.org/10.1002/advs.201800068
8. Lei S., Tang K., Fang Z. et al. Preparation of manganese indium sulfide urchins in aqueous solution-immiscible organic solvent. Mater. Res. Bull. 2006. 41. P. 2325-2333. https://doi.org/10.1016/j.materresbull.2006.04.015
9. Song Y., Guoa Y., Qia Sh. et al. Cu 7 S 4 /MnIn 2 S 4 heterojunction for efficient photocatalytic hydrogen generation. J. Alloys Compd. 2021. 884. P. 161035. https://doi.org/10.1016/j.jallcom.2021.161035
10. Kushnir B.V., Kovalyuk Z.D., Katerynchuk V.M. et al. Layered crystals FeIn 2 Se 4 , In 4 Se 3 and heterojunctions on their basis. Funct. Mater. 2017.
24. P. 372-375. http://doi.org/10.15407/fm24.03.372
11. Sharan A., Sajjad M., Singh D.J. et al. Two-dimen- sional ternary chalcogenides FeX 2 Y 4 (X = Ga, In; Y = S, Se, Te): Promising materials for sustainable energy. Phys. Rev. Mater. 2022. 6. P. 094005. https://doi.org/10.1103/PhysRevMaterials.6.094005
12. Yan D., Li K., Yan Y. et al. Cubic spinel XIn 2 S 4 (X = Fe, Co, Mn): A new type of anode material for superfast and ultrastable Na-ion storage. Adv. Energy Mater. 2021. 11. P. 2102137. https://doi.org/10.1002/aenm.202102137
13. Sardarli R., Salmanov F., Alieva N., Abbasli R.M. Impedance spectroscopy of (TlGaSe 2 ) 1-x (TlInSe 2 ) x solid solutions in radio frequency range. Mod. Phys. Lett. B. 2020. 34. P. 2050113. https://doi.org/10.1142/S0217984920501134
14. Moroz N.A., Lopez J.S., Djieutedjeu H. Indium preferential distribution enables electronic engineering of magnetism in FeSb 2-x In x Se 4 p-type high-tc ferromagnetic semiconductors. Chem. Mater. 2016. 28. P. 8570. https://doi.org/10.1021/acs.chemmater.6b03293
15. Mammadov F.M., Amiraslanov I.R., Imamaliyeva S.Z., Babanly M.B. Phase relations in the FeSe- FeGa 2 Se 4 -FeIn 2 Se 4 system. Refinement of the crystal structures of the FeIn 2 Se 4 and FeGaInSe 4 . J. Phase Equilib. Diffus. 2019. 40. P. 787-796. https://doi.org/10.1007/s11669-019-00768-2
16. Niftiyev N.N., Dashdemirov A.O., Mammadov F.M., Mamedov R.M. Optical properties of FeGaInS 4 single crystals under laser excitation. J. Appl. Spectrosc. 2023. 89. P. 1147-1149. https://doi.org/10.1007/s10812-023-01480-3
17. Guk M., Merschjann C., Tyborski T., Dermenji L. Photoluminescence MnIn 2 S 4 single crystals. Mold. J. Phys. Sci. 2011. 10. P. 137-142.