Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 037-046 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.037


References


1. Wu J., Ma H., Yin P. et al. Two-dimensional materials for integrated photonics: Recent advances and future challenges. Small Science. 2021. 1. P. 2000053. https://doi.org/10.1002/smsc.202000053
2. Youngblood N., Li M. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics. 2016. 6. P. 1205-1218. https://doi.org/10.1515/nanoph-2016-0155
3. Ruda H.E., Matsuura N. Nano-Engineered Tunable Photonic Crystals. In: Kasap S., Capper P. (eds). Springer Handbook of Electronic and Photonic Materials. Springer, Cham. 2017. https://doi.org/10.1007/978-3-319-48933-9_39
4. Seravalli L., Bosi M. A review on chemical vapour deposition of two-dimensional MoS 2 flakes. Materials. 2021. 14. P. 7590. https://doi.org/10.3390/ma14247590
5. Usman M., Nisar S., Kim D. et al. Polarization- sensitive photodetection of anisotropic 2D black arsenic. J. Phys. Chem. C. 2023. 127. P. 9076-9082. https://doi.org/10.1021/acs.jpcc.2c08630
6. Moon S., Kim J., Park J. et al. Hexagonal boron nitride for next-generation photonics and electronics. Adv. Mater. 2023. 35. P. 2204161. https://doi.org/10.1002/adma.202204161 SPQEO, 2025. V. 28, No 1. P. 037-046. Esposito F., Bosi M., Attolini G. et al. Two-dimensional MoS 2 for photonic applications 043
7. An J., Zhao X., Zhang Y. et al. Perspectives of 2D materials for optoelectronic integration. Adv. Funct. Mater. 2022. 32. P. 2110119. https://doi.org/10.1002/adfm.202110119
8. Golovynskyi S. Nanomaterials for optoelectronics: an overview. Ukr. J. Phys. Opt. 2023. 25. P. 01045-01053. https://doi.org/10.3116/16091833/24/5/S1/2023
9. Huang L., Krasnok A., Al? A. et al. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. Rep. Prog. Phys.
2022. 85. P. 046401. https://doi.org/10.1088/1361-6633/ac45f9
10. Yan S., Zhu X., Dong J. et al. 2D materials inte- grated with metallic nanostructures: Fundamentals and optoelectronic applications. Nanophotonics.
2020. 9. P. 1877-1900. https://doi.org/10.1515/nanoph-2020-0074
11. Liao F., Yu J., Gu Z. et al. Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing. Sci. Adv. 2019. 5. P. eaax7398. https://doi.org/10.1126/sciadv.aax7398
12. Gupta D., Chauhan V., Kumar R. A comprehensive review on synthesis and applications of molybdenum disulfide (MoS 2 ) material: Past and recent developments. Inorg. Chem. Commun. 2020.
121. P. 108200. https://doi.org/10.1016/j.inoche.2020.108200
13. Manzeli S., Ovchinnikov D., Pasquier D. et al. 2D transition metal dichalcogenides. Nat. Rev. Mater.
2017. 2. P. 17033. https://doi.org/10.1038/natrevmats.2017.33
14. Nalwa H.S. A review of molybdenum disulfide (MoS 2 ) based photodetectors: From ultra- broadband, self-powered to flexible devices. RSC Adv. 2020. 10. P. 30529-30602. https://doi.org/10.1039/d0ra03183f
15. Cheng Y., Wan R., Li L. et al. Research progress on improving the performance of MoS 2 photodetector. J. Opt. 2022. 24. P. 104003. https://doi.org/10.1088/2040-8986/ac8a5b
16. Li S., Lin Y.-C., Liu X.-Y. et al. Wafer-scale and deterministic patterned growth of monolayer MoS 2 via vapor-liquid-solid method. Nanoscale. 2019.
11. P. 16122-16129. https://doi.org/10.1039/C9NR04612G
17. Cai Z., Liu B., Zou X., Cheng H.-M. Chemical vapor deposition growth and applications of two- dimensional materials and their heterostructures. Chem. Rev. 2018. 11. P. 6091-6133. https://doi.org/10.1021/acs.chemrev.7b00536
18. Sun L., Yuan G., Gao L. et al. Chemical vapour deposition. Nat. Rev. Methods Primers. 2021. 1. P. 5. https://doi.org/10.1038/s43586-020-00005-y
19. Zhang J., Zhai T., Arifurrahman F. et al. Toward controlled synthesis of 2D crystals by CVD: Learning from the real-time crystal morphology evolutions. Nano Lett. 2024. 24. P. 2465-2472. https://doi.org/10.1021/acs.nanolett.3c04016
20. Guan H., Zhao B., Zhao W., Ni Z. Liquid- precursor-intermediated synthesis of atomically thin transition metal dichalcogenides. Mater. Horiz.
2023. 10. P. 1105-1120. https://doi.org/10.1039/D2MH01207C
21. Robertson J., Blomdahl D., Islam K. et al. Rapid- throughput solution-based production of wafer-scale 2D MoS 2 . Appl. Phys. Lett. 2019. 114. P. 163102. https://doi.org/10.1063/1.5093039
22. Esposito F., Bosi M., Attolini G. et al. Role of density gradients in the growth dynamics of 2-di- mensional MoS 2 using liquid phase molybdenum precursor in chemical vapor deposition. Appl. Surf. Sci. 2023. 639. P. 158230. https://doi.org/10.1016/j.apsusc.2023.158230
23. Seravalli L., Esposito F., Bosi M. et al. Built-in tensile strain dependence on the lateral size of monolayer MoS 2 synthesized by liquid precursor chemical vapor deposition. Nanoscale. 2023. 15. P. 14669-14678. https://doi.org/10.1039/D3NR01687K
24. Michail A., Parthenios J., Anestopoulos D. et al. Controllable, eco-friendly, synthesis of highly crystalline 2D-MoS 2 and clarification of the role of growth-induced strain. 2D Materials. 2018. 5. P.
035035. https://doi.org/10.1088/2053-1583/aac610
25. Lu Y., Chen T., Ryu G.H. et al. Self-limiting growth of high-quality 2D monolayer MoS 2 by direct sulfurization using precursor-soluble substrates for advanced field-effect transistors and photodetectors. ACS Appl. Nano. Mater. 2019. 2. P. 369-378. https://doi.org/10.1021/acsanm.8b01955
26. Kang W.T., Phan T.L., Ahn K.J. et al. Selective pattern growth of atomically thin MoSe 2 films via a surface-mediated liquid-phase promoter. ACS Appl. Mater. Interfaces. 2021. 13. P. 18056-18064. https://doi.org/10.1021/acsami.1c04005
27. Zhu J., Xu H., Zou G. et al. MoS 2 -OH bilayer- mediated growth of inch-sized monolayer MoS 2 on arbitrary substrates. J. Am. Chem. Soc. 2019. 141. P. 5392-5401. https://doi.org/10.1021/jacs.9b00047
28. Rotunno E., Bosi M., Seravalli L. et al. Influence of organic promoter gradient on the MoS 2 growth dynamics. Nanoscale Adv. 2020. 2. P. 2352-2362. https://doi.org/10.1039/d0na00147c
29. Ling X., Lee Y.-H., Lin Y. et al. Role of the seeding promoter in MoS 2 growth by chemical vapor deposition. Nano Lett. 2014. 14. P. 464-472. https://doi.org/10.1021/nl4033704
30. Kim H., Han G.H., Yun S.J. et al. Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides. Nanotechnology. 2017. 28. P. 36LT01. https://doi.org/10.1088/1361-6528/aa7e5e
31. Ji Q., Su C., Mao N. et al. Revealing the Br?nsted- Evans-Polanyi relation in halide-activated fast MoS 2 growth toward millimeter-sized 2D crystals. Sci. Adv. 2021. 7. P. eabj3274. https://doi.org/10.1126/sciadv.abj3274 SPQEO, 2025. V. 28, No 1. P. 037-046. Esposito F., Bosi M., Attolini G. et al. Two-dimensional MoS 2 for photonic applications 044
32. Chen R., Pei Y., Kang Y. et al. A high-speed photodetector fabricated with tungsten-doped MoS 2 by ion implantation. Adv. Electron. Mater. 2022. 8. P. 2200281. https://doi.org/10.1002/aelm.202200281
33. Wang S., Zeng X., Zhou Y. et al. High-performance MoS 2 complementary inverter prepared by oxygen plasma doping. ACS Appl. Electron. Mater. 2022. 4. P. 955-963. https://doi.org/10.1021/acsaelm.1c01070
34. Komsa H.-P., Krasheninnikov A.V. Native defects in bulk and monolayer MoS 2 from first principles. Phys. Rev. B. 2015. 91. P. 125304. https://doi.org/10.1103/PhysRevB.91.125304
35. Wang Z., Tripathi M., Golsanamlou Z. et al. Substitutional p-type doping in NbS 2 -MoS 2 lateral heterostructures grown by MOCVD. Adv. Mater.
2023. 35. P. 2209371. https://doi.org/10.1002/adma.202209371
36. Li M., Wu X., Guo W. et al. Controllable p-type doping of monolayer MoS 2 with tantalum by one- step chemical vapor deposition. J. Mater. Chem. C.
2022. 10. P. 7662-7673. https://doi.org/10.1039/D2TC01045C
37. Seo J., Son E., Kim J. et al. Controllable substitu- tional vanadium doping in wafer-scale molybdenum disulfide films. Nano Res. 2023. 16. P. 3415-3421. https://doi.org/10.1007/s12274-022-4945-7
38. Zhang T., Fujisawa K., Zhang F. et al. Universal in situ substitutional doping of transition metal dichalcogenides by liquid-phase precursor-assisted synthesis. ACS Nano. 2020. 14. P. 4326-4335. https://doi.org/10.1021/acsnano.9b09857
39. Liu X., Galfsky T., Sun Z. et al. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics. 2015. 9. P. 30-34. https://doi.org/10.1038/nphoton.2014.304
40. Lopez-Sanchez O., Alarcon Llado E., Koman V. et al. Light generation and harvesting in a van der Waals heterostructure. ACS Nano. 2014. 8. P. 3042-3048. https://doi.org/10.1021/nn500480u
41. Wang C., Yang F., Gao Y. The highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance. Nanoscale Adv. 2020. 2. P. 4323-4340. https://doi.org/10.1039/D0NA00501K
42. Woo Y., Hong W., Yang S.Y. et al. Large-area CVD-grown MoS 2 driver circuit array for flexible organic light-emitting diode display. Adv. Electron. Mater. 2018. 4. P. 1800251. https://doi.org/10.1002/aelm.201800251
43. Zu S., Li B., Gong Y. et al. Active control of plasmon-exciton coupling in MoS 2 -Ag hybrid nanostructures. Adv. Opt. Mater. 2016. 4. P. 1463-1469. https://doi.org/10.1002/adom.201600188
44. Irfan I., Golovynskyi S., Yeshchenko O.A. et al. Plasmonic enhancement of exciton and trion photo- luminescence in 2D MoS 2 decorated with Au nano- rods: Impact of nonspherical shape. Phys. E: Low- Dimens. Syst. Nanostruct. 2022. 140. P. 115213. https://doi.org/10.1016/j.physe.2022.115213
45. Hu T., Zhang R., Li J.-P. et al. Photodetectors based on two-dimensional MoS 2 and its assembled heterostructures. Chip. 2022. 1. P. 100017. https://doi.org/10.1016/j.chip.2022.100017
46. Butun S., Tongay S., Aydin K. Enhanced light emis- sion from large-area monolayer MoS 2 using plasmonic nanodisc arrays. Nano Lett. 2015. 15. P. 2700-2704. https://doi.org/10.1021/acs.nanolett.5b00407
47. Irfan I., Golovynskyi S., Bosi M. et al. Enhance- ment of Raman scattering and exciton/trion photo- luminescence of monolayer and few-layer MoS 2 by Ag nanoprisms and nanoparticles: Shape and size effects. J. Phys. Chem. C. 2021. 125. P. 4119-4132. https://doi.org/10.1021/acs.jpcc.0c11421
48. Chen X., Qiu Y., Yang H. et al. In-plane mosaic potential growth of large-area 2D layered semiconductors MoS 2 -MoSe 2 lateral hetero- structures and photodetector application. ACS Appl. Mater. Interfaces. 2017. 9. P. 1684-1691. https://doi.org/10.1021/acsami.6b13379
49. Taffelli A., Dir? S., Quaranta A., Pancheri L. MoS 2 based photodetectors: A review. Sensors. 2021. 21. P. 2758. https://doi.org/10.3390/s21082758
50. Yazyev O.V., Kis A. MoS 2 and semiconductors in the flatland. Mater. Today. 2015. 18. P. 20-30. https://doi.org/10.1016/j.mattod.2014.07.005
51. Wu W., Wang L., Yu R. et al. Piezophototronic effect in single-atomic-layer MoS 2 for strain-gated flexible optoelectronics. Adv. Mater. 2016. 28. P. 8463-8468. https://doi.org/10.1002/adma.201602854
52. Li Z., Luo J., Hu S. et al. Strain enhancement for a MoS 2 -on-GaN photodetector with an Al 2 O 3 stress liner grown by atomic layer deposition. Photonics Res. 2020. 8. P. 799. https://doi.org/10.1364/PRJ.385885
53. Xia F., Wang H., Xiao D. et al. Two-dimensional material nanophotonics. Nat. Photonics. 2014. 8. P. 899-907. https://doi.org/10.1038/nphoton.2014.271
54. Yang X., Li B. Monolayer MoS 2 for nanoscale photonics. Nanophotonics. 2020. 9. P. 1557-1577. https://doi.org/10.1515/nanoph-2019-0533
55. Maiti R., Patil C., Hemnani R.A. et al. Loss and coupling tuning via heterogeneous integration of MoS 2 layers in silicon photonics [Invited]. Opt. Mater. Express. 2019. 9. P. 751. https://doi.org/10.1364/OME.9.000751
56. Arezoomandan S., Gopalan P., Tian K. et al. Terahertz metamaterials employing layered 2-D materials beyond graphene. IEEE J. Sel. Top. Quantum Electron. 2017. 23. P. 188-194. https://doi.org/10.1109/JSTQE.2016.2616839
57. Gonzalez Marin J.F., Unuchek D., Watanabe K. et al. MoS 2 photodetectors integrated with photonic circuits. NPJ 2D Mater Appl. 2019. 3. P. 14. https://doi.org/10.1038/s41699-019-0096-4
58. Huang J., Akselrod G.M., Ming T. et al. Tailored emission spectrum of 2D semiconductors using plas- monic nanocavities. ACS Photonics. 2018. 5. P. 552-558. https://doi.org/10.1021/acsphotonics.7b01085 SPQEO, 2025. V. 28, No 1. P. 037-046. Esposito F., Bosi M., Attolini G. et al. Two-dimensional MoS 2 for photonic applications 045
59. Arakawa Y., Holmes M.J. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl. Phys. Rev. 2020. 7. P. 021309. https://doi.org/10.1063/5.0010193
60. Seravalli L., Trevisi G., Frigeri P. Design and growth of metamorphic InAs/InGaAs quantum dots for single photon emission in the telecom window. Cryst. Eng. Comm. 2012. 14. P. 6833. https://doi.org/10.1039/c2ce25860a
61. Toth M., Aharonovich I. Single photon sources in atomically thin materials. Annu. Rev. Phys. Chem.
2019. 70. P. 123-142. https://doi.org/10.1146/ annurev-physchem-042018-052628.
62. Palacios-Berraquero C., Barbone M., Kara D.M. et al. Atomically thin quantum light-emitting diodes. Nat. Commun. 2016. 7. P. 12978. https://doi.org/10.1038/ncomms12978
63. Klein J., Sigl L., Gyger S. et al. Engineering the luminescence and generation of individual defect emitters in atomically thin MoS 2 . ACS Photonics.
2021. 8. P. 669-677. https://doi.org/10.1021/acsphotonics.0c01907
64. Castellanos-Gomez A., Rold?n R., Cappelluti E. et al. Local strain engineering in atomically thin MoS 2 . Nano Lett. 2013. 13. P. 5361-5366. https://doi.org/10.1021/nl402875m
65. Krumland J., Velja S., Cocchi C. Quantum dots in transition metal dichalcogenides induced by atomic- scale deformations. ACS Photonics. 2024. 11. P. 586-595. https://doi.org/10.1021/acsphotonics.3c01470
66. Golovynskyi S., Bosi M., Seravalli L., Li B. MoS 2 two-dimensional quantum dots with weak lateral quantum confinement: Intense exciton and trion photoluminescence. Surfaces and Interfaces. 2021.
23. P. 100909. https://doi.org/10.1016/j.surfin.2020.100909
67. Golovynskyi S., Datsenko O.I., Dong D. et al. MoS 2 monolayer quantum dots on a flake: Efficient sensitization of exciton and trion photolumines- cence via resonant nonradiative energy and charge transfers. Appl. Surf. Sci. 2022. 601. P. 154209. https://doi.org/10.1016/j.apsusc.2022.154209