Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 047-052 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.047
References
1. Arnous A.H., Biswas A., Yildirim Y. et al.
Quiescent optical solitons with quadratic-cubic and
generalized quadratic-cubic nonlinearities. Telecom.
2023. 4. P. 31-42.
https://doi.org/10.3390/telecom4010003
2. Adem A.R., Ntsime B.P., Biswas A. et al.
Stationary optical solitons with nonlinear chromatic
dispersion for Lakshmanan-Porsezian-Daniel
model having Kerr law of refractive index. Ukr. J.
Phys. Opt. 2021. 22, Issue 2. P. 83-86.
https://doi.org/10.3116/16091833/22/2/83/2021
3. Adem A.R., Biswas A., Yildirim Y. et al. Sequel to
“Stationary optical solitons with nonlinear
chromatic dispersion for Lakshmanan-Porsezian-
Daniel model having Kerr law of nonlinear
refractive index”: generalized temporal evolution.
Ukr. J. Phys. Opt. 2024. 25, Issue 3. P. 03101-03104. https://doi.org/10.3116/16091833/
Ukr.J.Phys. Opt.2024.03101.
4. Yildirim Y. Quiescent optical solitons for Fokas-
Lennels equation with nonlinear chromatic
dispersion having quadratic and quadratic-quartic
forms of self-phase modulation. Ukr. J. Phys. Opt.
2024. 23, Issue 5. P. S1039-S1048. https://doi.org/
10.3116/16091833/Ukr.J.Phys.Opt.2024.S1039.
5. Ekici M. Stationary optical solitons with complex
Ginzburg-Landau equation having nonlinear
chromatic dispersion and Kudryashov’s refractive
index structures. Phys. Lett. A. 2022. 440. P. 128146.
https://doi.org/10.1016/j.physleta.2022.128146
6. Yal?? A.M. & Ekici M. Stationary optical solitons
with complex Ginzburg-Landau equation having
nonlinear chromatic dispersion. Opt. Quantum
Electron. 2022. 54, Issue 3, Art. 167.
https://doi.org/10.1007/s11082-022-03557-3
7. Ekici M. Stationary optical solitons with Kudrya-
shov’s quintuple power law nonlinearity by extended
Jacobi’s elliptic function expansion. J. Nonlinear
SPQEO, 2025. V. 28, No 1. P. 047-052.
Adem A.R., Biswas A. & Yildirim Y. Implicit quiescent optical solitons for perturbed Fokas-Lenells equation …
052
Opt. Phys. Mater. 2023. 32, Issue 1. P. 2350008.
https://doi.org/10.1142/S021886352350008X
8. Kudryashov N.A. Stationary solitons of the
generalized nonlinear Schr?dinger equation with
nonlinear dispersion and arbitrary refractive index.
Appl. Math. Lett. 2022. 128. P. 107888.
https://doi.org/10.1016/j.aml.2021.107888
9. Kudryashov N.A. Stationary solitons of the model
with nonlinear chromatic dispersion and arbitrary
refractive index. Optik. 2022. 259. P. 168888.
https://doi.org/10.1016/j.ijleo.2022.168888
10. Sonmezoglu A. Stationary optical solitons having
Kudryashov’s quintuple power law nonlinearity by
extended G'/G-expansion. Optik. 2022. 253. P.
168521. https://doi.org/10.1016/j.ijleo.2021.168521
11. Han T., Li Z., Li C. & Zhao L. Bifurcations,
stationary optical solitons and exact solutions for
complex Ginzburg-Landau equation with nonlinear
chromatic dispersion in non-Kerr law media. J. Opt.
2023. 52, Issue 2. P. 831-844.
https://doi.org/10.1007/s12596-022-01041-5
12. Jawad A.J.M., Abu-AlShaeer M.J. Highly
dispersive optical solitons with cubic law and
cubic-quintic-septic law nonlinearities by two
methods. Al-Rafidain J. Eng. Sci. 2023. 1, Issue 1.
P. 1-8. https://doi.org/10.61268/sapgh524
13. Jihad N., Almuhsan M.A.A. Evaluation of
impairment mitigations for optical fiber commu-
nications using dispersion compensation techniques.
Al-Rafidain J. Eng. Sci. 2023. 1, Issue 1. P. 81-92.
https://doi.org/10.61268/0dat0751
14. Yan Z. Envelope compactons and solitary patterns.
Phys. Lett. A. 2006. 355. P. 212-215.
https://doi.org/10.1016/j.physleta.2006.02.032
15. Yan Z. Envelope compact and solitary pattern
structures for the GNLS(m, n, p, q) equations. Phys.
Lett. A. 2006. 357. P. 196-203.
https://doi.org/10.1016/j.physleta.2006.04.032
| |
|
|