Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 047-052 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.047


References


1. Arnous A.H., Biswas A., Yildirim Y. et al. Quiescent optical solitons with quadratic-cubic and generalized quadratic-cubic nonlinearities. Telecom.
2023. 4. P. 31-42. https://doi.org/10.3390/telecom4010003
2. Adem A.R., Ntsime B.P., Biswas A. et al. Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan-Porsezian-Daniel model having Kerr law of refractive index. Ukr. J. Phys. Opt. 2021. 22, Issue 2. P. 83-86. https://doi.org/10.3116/16091833/22/2/83/2021
3. Adem A.R., Biswas A., Yildirim Y. et al. Sequel to “Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan-Porsezian- Daniel model having Kerr law of nonlinear refractive index”: generalized temporal evolution. Ukr. J. Phys. Opt. 2024. 25, Issue 3. P. 03101-03104. https://doi.org/10.3116/16091833/ Ukr.J.Phys. Opt.2024.03101.
4. Yildirim Y. Quiescent optical solitons for Fokas- Lennels equation with nonlinear chromatic dispersion having quadratic and quadratic-quartic forms of self-phase modulation. Ukr. J. Phys. Opt.
2024. 23, Issue 5. P. S1039-S1048. https://doi.org/ 10.3116/16091833/Ukr.J.Phys.Opt.2024.S1039.
5. Ekici M. Stationary optical solitons with complex Ginzburg-Landau equation having nonlinear chromatic dispersion and Kudryashov’s refractive index structures. Phys. Lett. A. 2022. 440. P. 128146. https://doi.org/10.1016/j.physleta.2022.128146
6. Yal?? A.M. & Ekici M. Stationary optical solitons with complex Ginzburg-Landau equation having nonlinear chromatic dispersion. Opt. Quantum Electron. 2022. 54, Issue 3, Art. 167. https://doi.org/10.1007/s11082-022-03557-3
7. Ekici M. Stationary optical solitons with Kudrya- shov’s quintuple power law nonlinearity by extended Jacobi’s elliptic function expansion. J. Nonlinear SPQEO, 2025. V. 28, No 1. P. 047-052. Adem A.R., Biswas A. & Yildirim Y. Implicit quiescent optical solitons for perturbed Fokas-Lenells equation … 052 Opt. Phys. Mater. 2023. 32, Issue 1. P. 2350008. https://doi.org/10.1142/S021886352350008X
8. Kudryashov N.A. Stationary solitons of the generalized nonlinear Schr?dinger equation with nonlinear dispersion and arbitrary refractive index. Appl. Math. Lett. 2022. 128. P. 107888. https://doi.org/10.1016/j.aml.2021.107888
9. Kudryashov N.A. Stationary solitons of the model with nonlinear chromatic dispersion and arbitrary refractive index. Optik. 2022. 259. P. 168888. https://doi.org/10.1016/j.ijleo.2022.168888
10. Sonmezoglu A. Stationary optical solitons having Kudryashov’s quintuple power law nonlinearity by extended G'/G-expansion. Optik. 2022. 253. P.
168521. https://doi.org/10.1016/j.ijleo.2021.168521
11. Han T., Li Z., Li C. & Zhao L. Bifurcations, stationary optical solitons and exact solutions for complex Ginzburg-Landau equation with nonlinear chromatic dispersion in non-Kerr law media. J. Opt.
2023. 52, Issue 2. P. 831-844. https://doi.org/10.1007/s12596-022-01041-5
12. Jawad A.J.M., Abu-AlShaeer M.J. Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities by two methods. Al-Rafidain J. Eng. Sci. 2023. 1, Issue 1. P. 1-8. https://doi.org/10.61268/sapgh524
13. Jihad N., Almuhsan M.A.A. Evaluation of impairment mitigations for optical fiber commu- nications using dispersion compensation techniques. Al-Rafidain J. Eng. Sci. 2023. 1, Issue 1. P. 81-92. https://doi.org/10.61268/0dat0751
14. Yan Z. Envelope compactons and solitary patterns. Phys. Lett. A. 2006. 355. P. 212-215. https://doi.org/10.1016/j.physleta.2006.02.032
15. Yan Z. Envelope compact and solitary pattern structures for the GNLS(m, n, p, q) equations. Phys. Lett. A. 2006. 357. P. 196-203. https://doi.org/10.1016/j.physleta.2006.04.032