Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 059-069 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.059
References
1. Gao P., Yang Z., He J. et al. Dopant-free and
carrier-selective heterocontacts for silicon solar
cells: recent advances and perspectives. Adv. Sci.
2017. 5, No 3. P. 1700547.
https://doi.org/10.1002/advs.201700547
2. He J., Gao P., Ling Z. et al. High-efficiency
silicon/organic heterojunction solar cells with
improved junction quality and interface passivation.
ACS Nano. 2016. 10, No 12. P. 11525-11531.
https://doi.org/10.1021/acsnano.6b07511
3. J?ckle S., Liebhaber M., Gersmann C. et al.
Potential of PEDOT:PSS as a hole selective front
contact for silicon heterojunction solar cells. Sci.
Rept. 2017. 7, No 1. P. 2170.
https://doi.org/10.1038/s41598-017-01946-3
4. Liu Q., Ishikawa R., Funada S. et al. Highly
efficient solution-processed poly(3,4-ethylene-
dioxythiophene):poly(styrenesulfonate)/crystalline-
silicon heterojunction solar cells with improved
light-induced stability. Adv. Energy Mater. 2015. 5,
No 17. P. 1500744.
https://doi.org/10.1002/aenm.201500744
5. Shahrim N.A., Ahmad Z., Azman A.W. et al.
Mechanisms for doped PEDOT:PSS electrical
conductivity improvement. Mater. Adv. 2021. 2, No
22. P. 7118-7138.
https://doi.org/10.1039/d1ma00290b
6. Song I., Park N.Y., Jeong G.S., et al. Conductive
channel formation for enhanced electrical
conductivity of PEDOT:PSS with high work-
function. Appl. Surf. Sci. 2020. 529. P. 147176.
https://doi.org/10.1016/j.apsusc.2020.147176
7. Otieno F., Shumbula N.P., Airo M. et al. Improved
efficiency of organic solar cells using Au NPs
incorporated into PEDOT:PSS buffer layer. AIP
Advances. 2017. 7, No 8. P. 085302.
https://doi.org/10.1063/1.4995803
8. Fung D.D.S., Qiao L., Choy W.C.H. et al. Optical
and electrical properties of efficiency enhanced poly-
mer solar cells with Au nanoparticles in a PEDOT-
PSS layer. J. Mater. Chem. 2011. 21, No 41. P.
16349-16356. https://doi.org/10.1039/c1jm12820e
9. Iwan A., Boharewicz B., Tazbir I. et al. Silver nano-
particles in PEDOT:PSS layer for polymer solar cell
application. Int. J. Photoenergy. 2015. 2015.
P. 764938. https://doi.org/10.1155/2015/764938
10. Singh P., Srivastava S.K., Sivaiah B. et al. En-
hanced photovoltaic performance of PEDOT:PSS/Si
solar cells using hierarchical light trapping scheme.
Solar Energy. 2018. 170. P. 221-233.
https://doi.org/10.1016/j.solener.2018.05.048
11. Li C., He Z., Wang Q. et al. Performance improve-
ment of PEDOT:PSS/n-Si heterojunction solar cells
by alkaline etching. Silicon. 2021. 14, No 5.
P. 2299-2307. https://doi.org/10.1007/s12633-021-
01034-2.
12. Zhang C., Zhang Y., Guo H. et al. Efficient planar
hybrid n-Si/PEDOT:PSS solar cells with power
conversion efficiency up to 13.31% achieved by
controlling the SiO x interlayer. Energies. 2018. 11,
No 6. P. 1397. https://doi.org/10.3390/en11061397
13. Li X. Metal assisted chemical etching for high
aspect ratio nanostructures: A review of charac-
teristics and applications in photovoltaics. Curr.
Opin. Solid State Mater. Sci. 2012. 16, No 2. P. 71-81. https://doi.org/10.1016/j.cossms.2011.11.002
14. Mamykin S., Mamontova I., Kotova N. et al. Nano-
composite solar cells based on organic/inorganic
(clonidine/Si) heterojunction with plasmonic Au nano-
particles. Phys. Chem. Solid State. 2020. 21, No 3.
P. 390-398. https://doi.org/10.15330/pcss.21.3.390-398
15. Dmitruk N.L., Borkovskaya O.Y., Dmitruk I.N.,
Mamontova I.B. Analysis of thin film surface
barrier solar cells with a microrelief interface. Sol.
Energy Mater. Sol. Cells. 2003. 76, No 4. P. 625-635. https://doi.org/10.1016/S0927-0248(02)00272-6
SPQEO, 2025. V. 28, No 1. P. 059-069.
Mamykin S.V., Lunko T.S., Mamontova I.B. et al. Comparison of optical and photovoltaic characteristics …
067
16. Dmitruk N.L., Borkovskaya O.Yu., Mamykin S.V.
et al. Au/GaAs photovoltaic structures with single-
wall carbon nanotubes on the microrelief interface.
SPQEO. 2015. 18. P. 31-35.
https://doi.org/10.15407/spqeo18.01.031
17. Dmitruk N., Barlas T., Dmytruk A., Korovin A.,
Romanyuk V. Synthesis of 1D regular arrays of
gold nanoparticles and modeling of their optical
properties. J. Nanosci. Nanotechnol. 2008. 8, No 2.
P. 564-571. https://doi.org/10.1166/jnn.2008.a137
18. Kondratenko S., Lysenko V., Gomeniuk Y. et al.
Charge carrier transport, trapping, and recombina-
tion in PEDOT:PSS/n-Si solar cells. ACS Appl.
Energy Mater. 2019. 2, No 8. P. 5983-5991.
https://doi.org/10.1021/acsaem.9b01083
19. Jiang Y., Gong X., Qin R. et al. Efficiency enhance-
ment mechanism for poly(3,4-ethylene-dioxythio-
phene):poly(styrenesulfonate)/silicon nanowires
hybrid solar cells using alkali treatment. Nanoscale
Res. Lett. 2016. 11, No 1. P. 267.
https://doi.org/10.1186/s11671-016-1450-5
20. Mamykin S.V., Mamontova I.B., Lunko T.S. et al.
Fabrication and conductivity of thin PEDOT:PSS-
CNT composite films. SPQEO. 2021. 24. P. 148-153. https://doi.org/10.15407/spqeo24.02.148
21. Schroder D.K. Semiconductor Material and Device
Characterization. 2nd ed. New York, USA: John
Wiley & Sons, Inc. 1998.
22. Horii T., Hikawa H., Katsunuma M., Okuzaki H.
Synthesis of highly conductive PEDOT:PSS and
correlation with hierarchical structure. Polymer.
2018. 140. P. 33-38.
https://doi.org/10.1016/j.polymer.2018.02.034
23. Li Q., Yang J., Chen S. et al. Highly conductive
PEDOT:PSS transparent hole transporting layer
with solvent treatment for high performance
silicon/organic hybrid solar cells. Nanoscale Res.
Lett. 2017. 12, No 1. P. 506.
https://doi.org/10.1186/s11671-017-2276-5
24. Alemu D., Wei H.-Y., Ho K.-C., Chu C.-W. Highly
conductive PEDOT:PSS electrode by simple film
treatment with methanol for ITO-free polymer solar
cells. Energy Environ. Sci. 2012. 5. No 11. P. 9662-9671. https://doi.org/10.1039/c2ee22595f
25. Ouyang J. Solution-processed PEDOT:PSS films
with conductivities as indium tin oxide through a
treatment with mild and weak organic acids. ACS
Appl. Mater. Interfaces. 2013. 5, No 24. P. 13082-13088. https://doi.org/10.1021/am404113n
26. Yu Z., Xia Y., Du D., Ouyang J. PEDOT:PSS films
with metallic conductivity through a treatment with
common organic solutions of organic salts and their
application as a transparent electrode of polymer
solar cells. ACS Appl. Mater. Interfaces. 2016. 8,
No 18. P. 11629-11638.
https://doi.org/10.1021/acsami.6b00317
27. Xia Y., Ouyang J. Salt-induced charge screening
and significant conductivity enhancement of
conducting poly(3,4-ethylenedioxythiophene):poly
(styrenesulfonate). Macromolecules. 2009. 42, No 12.
P. 4141-4147. https://doi.org/10.1021/ma900327d
28. Fujiwara H. Spectroscopic Ellipsometry: Principles
and Applications. Chichester, Great Britain: John
Wiley & Sons, Ltd. 2007.
29. Kondratenko O.S., Mamykin S.V., Lunko T.S., et al.
Optical characterization of hybrid PEDOT:PSS/Si
heterostructures by spectroscopic ellipsometry. Mol.
Cryst. Liq. Cryst. 2021. 717, No 1. P. 92-97.
https://doi.org/10.1080/15421406.2020.1860533
30. Sze S.M. Physics of Semiconductor Devices. 2nd
ed. New York, USA: John Wiley and Sons. 1981.
31. Qi B., Wang J. Fill factor in organic solar cells.
Phys. Chem. Chem. Phys. 2013. 15, No 23. P.
8972-8982. https://doi.org/10.1039/c3cp51383a
32. Sheng J., Fan K., Wang D. et al. Improvement of
the SiO x passivation layer for high-efficiency
Si/PEDOT:PSS heterojunction solar cells. ACS
Appl. Mater. Interfaces. 2014. 6, No 18. P. 16027-16034. https://doi.org/10.1021/am503949g
33. Sun Z., He Y., Xiong B. et al. Performance-enhan-
cing approaches for PEDOT:PSS-Si hybrid solar
cells. Angew. Chem. Int. Ed. 2020. 60, No 10. P.
5036-5055. https://doi.org/10.1002/anie.201910629
34. Feng L., Zhang L., Liu H. et al. Characterization
study of native oxides on GaAs(100) surface by
XPS. Proc. SPIE8912, International Symposium on
Photoelectronic Detection and Imaging 2013: Low-
Light-Level Technology and Applications. 2013. P.
89120N. https://doi.org/10.1117/12.2033679
35. Moriarty P., Hughes G. An investigation of the
early stages of native oxide growth on chemically
etched and sulfur-treated GaAs(100) and InP(100)
surfaces by scanning tunnelling microscopy.
Ultramicroscopy. 1992. 42-44, Part 1. P. 956-961.
https://doi.org/10.1016/0304-3991(92)90385-w
| |
|
|