Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 059-069 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.059


References


1. Gao P., Yang Z., He J. et al. Dopant-free and carrier-selective heterocontacts for silicon solar cells: recent advances and perspectives. Adv. Sci.
2017. 5, No 3. P. 1700547. https://doi.org/10.1002/advs.201700547
2. He J., Gao P., Ling Z. et al. High-efficiency silicon/organic heterojunction solar cells with improved junction quality and interface passivation. ACS Nano. 2016. 10, No 12. P. 11525-11531. https://doi.org/10.1021/acsnano.6b07511
3. J?ckle S., Liebhaber M., Gersmann C. et al. Potential of PEDOT:PSS as a hole selective front contact for silicon heterojunction solar cells. Sci. Rept. 2017. 7, No 1. P. 2170. https://doi.org/10.1038/s41598-017-01946-3
4. Liu Q., Ishikawa R., Funada S. et al. Highly efficient solution-processed poly(3,4-ethylene- dioxythiophene):poly(styrenesulfonate)/crystalline- silicon heterojunction solar cells with improved light-induced stability. Adv. Energy Mater. 2015. 5, No 17. P. 1500744. https://doi.org/10.1002/aenm.201500744
5. Shahrim N.A., Ahmad Z., Azman A.W. et al. Mechanisms for doped PEDOT:PSS electrical conductivity improvement. Mater. Adv. 2021. 2, No
22. P. 7118-7138. https://doi.org/10.1039/d1ma00290b
6. Song I., Park N.Y., Jeong G.S., et al. Conductive channel formation for enhanced electrical conductivity of PEDOT:PSS with high work- function. Appl. Surf. Sci. 2020. 529. P. 147176. https://doi.org/10.1016/j.apsusc.2020.147176
7. Otieno F., Shumbula N.P., Airo M. et al. Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer. AIP Advances. 2017. 7, No 8. P. 085302. https://doi.org/10.1063/1.4995803
8. Fung D.D.S., Qiao L., Choy W.C.H. et al. Optical and electrical properties of efficiency enhanced poly- mer solar cells with Au nanoparticles in a PEDOT- PSS layer. J. Mater. Chem. 2011. 21, No 41. P. 16349-16356. https://doi.org/10.1039/c1jm12820e
9. Iwan A., Boharewicz B., Tazbir I. et al. Silver nano- particles in PEDOT:PSS layer for polymer solar cell application. Int. J. Photoenergy. 2015. 2015. P. 764938. https://doi.org/10.1155/2015/764938
10. Singh P., Srivastava S.K., Sivaiah B. et al. En- hanced photovoltaic performance of PEDOT:PSS/Si solar cells using hierarchical light trapping scheme. Solar Energy. 2018. 170. P. 221-233. https://doi.org/10.1016/j.solener.2018.05.048
11. Li C., He Z., Wang Q. et al. Performance improve- ment of PEDOT:PSS/n-Si heterojunction solar cells by alkaline etching. Silicon. 2021. 14, No 5. P. 2299-2307. https://doi.org/10.1007/s12633-021- 01034-2.
12. Zhang C., Zhang Y., Guo H. et al. Efficient planar hybrid n-Si/PEDOT:PSS solar cells with power conversion efficiency up to 13.31% achieved by controlling the SiO x interlayer. Energies. 2018. 11, No 6. P. 1397. https://doi.org/10.3390/en11061397
13. Li X. Metal assisted chemical etching for high aspect ratio nanostructures: A review of charac- teristics and applications in photovoltaics. Curr. Opin. Solid State Mater. Sci. 2012. 16, No 2. P. 71-81. https://doi.org/10.1016/j.cossms.2011.11.002
14. Mamykin S., Mamontova I., Kotova N. et al. Nano- composite solar cells based on organic/inorganic (clonidine/Si) heterojunction with plasmonic Au nano- particles. Phys. Chem. Solid State. 2020. 21, No 3. P. 390-398. https://doi.org/10.15330/pcss.21.3.390-398
15. Dmitruk N.L., Borkovskaya O.Y., Dmitruk I.N., Mamontova I.B. Analysis of thin film surface barrier solar cells with a microrelief interface. Sol. Energy Mater. Sol. Cells. 2003. 76, No 4. P. 625-635. https://doi.org/10.1016/S0927-0248(02)00272-6 SPQEO, 2025. V. 28, No 1. P. 059-069. Mamykin S.V., Lunko T.S., Mamontova I.B. et al. Comparison of optical and photovoltaic characteristics … 067
16. Dmitruk N.L., Borkovskaya O.Yu., Mamykin S.V. et al. Au/GaAs photovoltaic structures with single- wall carbon nanotubes on the microrelief interface. SPQEO. 2015. 18. P. 31-35. https://doi.org/10.15407/spqeo18.01.031
17. Dmitruk N., Barlas T., Dmytruk A., Korovin A., Romanyuk V. Synthesis of 1D regular arrays of gold nanoparticles and modeling of their optical properties. J. Nanosci. Nanotechnol. 2008. 8, No 2. P. 564-571. https://doi.org/10.1166/jnn.2008.a137
18. Kondratenko S., Lysenko V., Gomeniuk Y. et al. Charge carrier transport, trapping, and recombina- tion in PEDOT:PSS/n-Si solar cells. ACS Appl. Energy Mater. 2019. 2, No 8. P. 5983-5991. https://doi.org/10.1021/acsaem.9b01083
19. Jiang Y., Gong X., Qin R. et al. Efficiency enhance- ment mechanism for poly(3,4-ethylene-dioxythio- phene):poly(styrenesulfonate)/silicon nanowires hybrid solar cells using alkali treatment. Nanoscale Res. Lett. 2016. 11, No 1. P. 267. https://doi.org/10.1186/s11671-016-1450-5
20. Mamykin S.V., Mamontova I.B., Lunko T.S. et al. Fabrication and conductivity of thin PEDOT:PSS- CNT composite films. SPQEO. 2021. 24. P. 148-153. https://doi.org/10.15407/spqeo24.02.148
21. Schroder D.K. Semiconductor Material and Device Characterization. 2nd ed. New York, USA: John Wiley & Sons, Inc. 1998.
22. Horii T., Hikawa H., Katsunuma M., Okuzaki H. Synthesis of highly conductive PEDOT:PSS and correlation with hierarchical structure. Polymer.
2018. 140. P. 33-38. https://doi.org/10.1016/j.polymer.2018.02.034
23. Li Q., Yang J., Chen S. et al. Highly conductive PEDOT:PSS transparent hole transporting layer with solvent treatment for high performance silicon/organic hybrid solar cells. Nanoscale Res. Lett. 2017. 12, No 1. P. 506. https://doi.org/10.1186/s11671-017-2276-5
24. Alemu D., Wei H.-Y., Ho K.-C., Chu C.-W. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ. Sci. 2012. 5. No 11. P. 9662-9671. https://doi.org/10.1039/c2ee22595f
25. Ouyang J. Solution-processed PEDOT:PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids. ACS Appl. Mater. Interfaces. 2013. 5, No 24. P. 13082-13088. https://doi.org/10.1021/am404113n
26. Yu Z., Xia Y., Du D., Ouyang J. PEDOT:PSS films with metallic conductivity through a treatment with common organic solutions of organic salts and their application as a transparent electrode of polymer solar cells. ACS Appl. Mater. Interfaces. 2016. 8, No 18. P. 11629-11638. https://doi.org/10.1021/acsami.6b00317
27. Xia Y., Ouyang J. Salt-induced charge screening and significant conductivity enhancement of conducting poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate). Macromolecules. 2009. 42, No 12. P. 4141-4147. https://doi.org/10.1021/ma900327d
28. Fujiwara H. Spectroscopic Ellipsometry: Principles and Applications. Chichester, Great Britain: John Wiley & Sons, Ltd. 2007.
29. Kondratenko O.S., Mamykin S.V., Lunko T.S., et al. Optical characterization of hybrid PEDOT:PSS/Si heterostructures by spectroscopic ellipsometry. Mol. Cryst. Liq. Cryst. 2021. 717, No 1. P. 92-97. https://doi.org/10.1080/15421406.2020.1860533
30. Sze S.M. Physics of Semiconductor Devices. 2nd ed. New York, USA: John Wiley and Sons. 1981.
31. Qi B., Wang J. Fill factor in organic solar cells. Phys. Chem. Chem. Phys. 2013. 15, No 23. P. 8972-8982. https://doi.org/10.1039/c3cp51383a
32. Sheng J., Fan K., Wang D. et al. Improvement of the SiO x passivation layer for high-efficiency Si/PEDOT:PSS heterojunction solar cells. ACS Appl. Mater. Interfaces. 2014. 6, No 18. P. 16027-16034. https://doi.org/10.1021/am503949g
33. Sun Z., He Y., Xiong B. et al. Performance-enhan- cing approaches for PEDOT:PSS-Si hybrid solar cells. Angew. Chem. Int. Ed. 2020. 60, No 10. P. 5036-5055. https://doi.org/10.1002/anie.201910629
34. Feng L., Zhang L., Liu H. et al. Characterization study of native oxides on GaAs(100) surface by XPS. Proc. SPIE8912, International Symposium on Photoelectronic Detection and Imaging 2013: Low- Light-Level Technology and Applications. 2013. P. 89120N. https://doi.org/10.1117/12.2033679
35. Moriarty P., Hughes G. An investigation of the early stages of native oxide growth on chemically etched and sulfur-treated GaAs(100) and InP(100) surfaces by scanning tunnelling microscopy. Ultramicroscopy. 1992. 42-44, Part 1. P. 956-961. https://doi.org/10.1016/0304-3991(92)90385-w