Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 077-082 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.077


References


1. Guan Y., Cecati C., Alonso J.M., Zhang Z. Review of high-frequency high-voltage-conversion-ratio DC-DC converters. IEEE J. Emerg. Sel. Top. Industr. Electron. 2021. 2, No 4. P. 374-389. https://doi.org/10.1109/jestie.2021.3051554
2. Sutikno T., Purnama H.S., Widodo N.S. et al. A review on non-isolated low-power DC-DC converter topologies with high output gain for solar photovoltaic system applications. Clean Energy.
2022. 6, No 4. P. 557-572. https://doi.org/10.1093/ce/zkac037
3. Sibu G.A., Gayathri P., Akila T. et al. Manifestation on the choice of a suitable combination of MIS for proficient Schottky diodes for optoelectronic applications: A comprehensive review. Nano Energy. 2024. 125. P. 109534. https://doi.org/10.1016/j.nanoen.2024.109534
4. Rajabi A., Shahir F.M., Babaei E. Performance of a novel DC-DC low voltage stress boost converter for fuel-cell vehicle. Comput. Electr. Eng. 2023. 111. P. 108950. https://doi.org/10.1016/j.compeleceng.2023.108950
5. Lipski M., Li Y., Misra M., Gregori S. A low forward bias active diode circuit for electrostatic energy harvesters. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018. P. 1-5. https://doi.org/10.1109/ISCAS.2018.8351218
6. Kornaga V.I., Pekur D.V., Kolomzarov Yu.V. et al. Intelligence system for monitoring and governing the energy efficiency of solar panels to power LED luminaires. SPQEO. 2021. 24. P. 200-209. https://doi.org 10.15407/spqeo24.02.200.
7. Wang Y., Alonso J.M., Ruan X. A review of LED drivers and related technologies. IEEE Trans. Industr. Electron. 2017. 64, No 7. P. 5754-5765. https://doi.org/10.1109/tie.2017.2677335
8. Luo Y., Cheng N., Zhang S. et al. Comprehensive energy, economic, environmental assessment of a building integrated photovoltaic-thermoelectric sys- tem with battery storage for net zero energy building. Building Simulation. 2022. 15, No 11. P. 1923-1941. https://doi.org/10.1007/s12273-022-0904-1
9. Ni J., Zhang F., Yu Y., Gong C., Deng X. High power factor, low voltage stress, LED driver without electrolytic capacitor. 2011 International Conference on Power Engineering, Energy and Electrical Drives, Malaga, Spain, 2011. P. 1-6. https://doi.org/10.1109/powereng.2011.6036462
10. Tsai W.-T., Chen Y.-J., Chen Y.-M. A modified forward PFC converter for LED lighting applications. IEEE Open J. Power Electron. 2022.
3. P. 787-797. https://doi.org/10.1109/ojpel.2022.3217455
11. Wu H., Xing Y. Families of forward converters suitable for wide input voltage range applications. IEEE Trans. Power Electron. 2014. 29. P. 6006-6017. https://doi.org/10.1109/TPEL.2014.2298617
12. Sayed K., Abo-Khalil A.G. An interleaved two switch soft-switching forward PWM power converter with current doubler rectifier. Electronics.
2022. 11, No 16. P. 2551. https://doi.org/10.3390/electronics11162551
13. Feng W., Chen Y., Jiang J., Jiang W. Modeling and controller design of flyback converter operating in DCM for LED constant current drive. IOP Conf. Ser.: Earth Environ. Sci. 2020. 512, No 1. P. 012172. https://doi.org/10.1088/1755-1315/512/1/012172
14. Leng Y., Sun K., Wu X. et al. A single-stage primary side controlled flyback LED driver. Analog Integr. Circuits Signal Process. 2015. 86, No 3. P. 439-447. https://doi.org/10.1007/s10470-015-0671-3
15. G?r?am K., Almal? M.N. A high-efficiency single- stage isolated Sepic-Flyback AC-DC LED driver. Electronics. 2023. 12, No 24. P. 4946. https://doi.org/10.3390/electronics12244946
16. Azcondo F.J., Zane R., Branas C. Design of resonant inverters for optimal efficiency over lamp life in electronic ballast with phase control. Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005, Austin, TX, USA. P. 1053-1059. https://doi.org/10.1109/APEC.2005.1453124
17. Yeung Y.P.B., Cheng K.W.E., Ho S.L. et al. Unified analysis of switched-capacitor resonant converters. IEEE Trans. Ind. Electron. 2004. 51, No
4. P. 864-873. https://doi.org/.1109/TIE.2004.831743
18. Gao S., Wang Y., Zhang S. Xu D. A two-stage quasi-resonant dual buck LED driver with digital control method. 2016 IEEE Ind. Electron. Appl. Conf. (IEACon), Kota Kinabalu, Malaysia. P. 36-41. https://doi.org/10.1109/IEACON.2016.8067352
19. Li Y.-C. A novel control scheme of quasi-resonant valley-switching for high-power-factor AC-to-DC LED drivers. IEEE Trans. Ind. Electron. 2015. 62, No 8. P. 4787-4794. https://doi.org/10.1109/TIE.2015.2397875
20. Posudievsky O.Yu., Lypenko D.A., Khazieieva O.A. et al. Nanocomposite of polyaniline with partially oxidized graphene as the transport layer of light- emitting polymer diodes. Theor. Exp. Chem. 2014. 50, No 2. P. 96-102. 10.1007/s11237-014-9352-z.
21. Kutulya L.A., Semenkova G.P., Shkolnikova N.I. et al. New N-arylidene (S)-1-phenylethylamines as the components of induced short-pitch cholesterics. Mol. Cryst. Liq. Cryst. Sect. A. 2001. 357, No 1. P. 43-54. https://doi.org/10.1080/10587250108028243
22. Kozachenko A., Nazarenko V., Sorokin V. et al. Syn- thesis and properties of chiral dopants synthesized on the base of 2-methylbutanol and e-menthol. Mol. Cryst. Liq. Cryst. Sect. A. 1998. 324, No 1. P. 251-256. https://doi.org/10.1080/10587259808047162
23. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. et al. Determination of optical parameters in quasi- monochromatic LEDs for implementation of lighting systems with tunable correlated color temperature. SPQEO. 2022. 25. P. 303-314. https://doi.org/10.15407/spqeo25.03.303
24. Minyailo A.M., Pekur I.V., Kornaga V.I. et al. Optimizing the spectral composition of light from LED phytolighting systems to improve energy efficiency. SPQEO. 2023. 26. P. 463-469. https://doi.org/10.15407/spqeo26.04.463