Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 077-082 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.077
References
1. Guan Y., Cecati C., Alonso J.M., Zhang Z. Review
of high-frequency high-voltage-conversion-ratio
DC-DC converters. IEEE J. Emerg. Sel. Top.
Industr. Electron. 2021. 2, No 4. P. 374-389.
https://doi.org/10.1109/jestie.2021.3051554
2. Sutikno T., Purnama H.S., Widodo N.S. et al. A
review on non-isolated low-power DC-DC
converter topologies with high output gain for solar
photovoltaic system applications. Clean Energy.
2022. 6, No 4. P. 557-572.
https://doi.org/10.1093/ce/zkac037
3. Sibu G.A., Gayathri P., Akila T. et al. Manifestation
on the choice of a suitable combination of MIS for
proficient Schottky diodes for optoelectronic
applications: A comprehensive review. Nano
Energy. 2024. 125. P. 109534.
https://doi.org/10.1016/j.nanoen.2024.109534
4. Rajabi A., Shahir F.M., Babaei E. Performance of a
novel DC-DC low voltage stress boost converter for
fuel-cell vehicle. Comput. Electr. Eng. 2023. 111.
P. 108950.
https://doi.org/10.1016/j.compeleceng.2023.108950
5. Lipski M., Li Y., Misra M., Gregori S. A low
forward bias active diode circuit for electrostatic
energy harvesters. 2018 IEEE International
Symposium on Circuits and Systems (ISCAS),
Florence, Italy, 2018. P. 1-5.
https://doi.org/10.1109/ISCAS.2018.8351218
6. Kornaga V.I., Pekur D.V., Kolomzarov Yu.V. et al.
Intelligence system for monitoring and governing
the energy efficiency of solar panels to power LED
luminaires. SPQEO. 2021. 24. P. 200-209.
https://doi.org 10.15407/spqeo24.02.200.
7. Wang Y., Alonso J.M., Ruan X. A review of LED
drivers and related technologies. IEEE Trans.
Industr. Electron. 2017. 64, No 7. P. 5754-5765.
https://doi.org/10.1109/tie.2017.2677335
8. Luo Y., Cheng N., Zhang S. et al. Comprehensive
energy, economic, environmental assessment of a
building integrated photovoltaic-thermoelectric sys-
tem with battery storage for net zero energy building.
Building Simulation. 2022. 15, No 11. P. 1923-1941. https://doi.org/10.1007/s12273-022-0904-1
9. Ni J., Zhang F., Yu Y., Gong C., Deng X. High
power factor, low voltage stress, LED driver
without electrolytic capacitor. 2011 International
Conference on Power Engineering, Energy and
Electrical Drives, Malaga, Spain, 2011. P. 1-6.
https://doi.org/10.1109/powereng.2011.6036462
10. Tsai W.-T., Chen Y.-J., Chen Y.-M. A modified
forward PFC converter for LED lighting
applications. IEEE Open J. Power Electron. 2022.
3. P. 787-797.
https://doi.org/10.1109/ojpel.2022.3217455
11. Wu H., Xing Y. Families of forward converters
suitable for wide input voltage range applications.
IEEE Trans. Power Electron. 2014. 29. P. 6006-6017. https://doi.org/10.1109/TPEL.2014.2298617
12. Sayed K., Abo-Khalil A.G. An interleaved two
switch soft-switching forward PWM power
converter with current doubler rectifier. Electronics.
2022. 11, No 16. P. 2551.
https://doi.org/10.3390/electronics11162551
13. Feng W., Chen Y., Jiang J., Jiang W. Modeling and
controller design of flyback converter operating in
DCM for LED constant current drive. IOP Conf. Ser.:
Earth Environ. Sci. 2020. 512, No 1. P. 012172.
https://doi.org/10.1088/1755-1315/512/1/012172
14. Leng Y., Sun K., Wu X. et al. A single-stage
primary side controlled flyback LED driver. Analog
Integr. Circuits Signal Process. 2015. 86, No 3. P.
439-447. https://doi.org/10.1007/s10470-015-0671-3
15. G?r?am K., Almal? M.N. A high-efficiency single-
stage isolated Sepic-Flyback AC-DC LED driver.
Electronics. 2023. 12, No 24. P. 4946.
https://doi.org/10.3390/electronics12244946
16. Azcondo F.J., Zane R., Branas C. Design of
resonant inverters for optimal efficiency over lamp
life in electronic ballast with phase control.
Twentieth Annual IEEE Applied Power Electronics
Conference and Exposition, 2005. APEC 2005,
Austin, TX, USA. P. 1053-1059.
https://doi.org/10.1109/APEC.2005.1453124
17. Yeung Y.P.B., Cheng K.W.E., Ho S.L. et al.
Unified analysis of switched-capacitor resonant
converters. IEEE Trans. Ind. Electron. 2004. 51, No
4. P. 864-873. https://doi.org/.1109/TIE.2004.831743
18. Gao S., Wang Y., Zhang S. Xu D. A two-stage
quasi-resonant dual buck LED driver with digital
control method. 2016 IEEE Ind. Electron. Appl.
Conf. (IEACon), Kota Kinabalu, Malaysia. P. 36-41. https://doi.org/10.1109/IEACON.2016.8067352
19. Li Y.-C. A novel control scheme of quasi-resonant
valley-switching for high-power-factor AC-to-DC
LED drivers. IEEE Trans. Ind. Electron. 2015. 62,
No 8. P. 4787-4794.
https://doi.org/10.1109/TIE.2015.2397875
20. Posudievsky O.Yu., Lypenko D.A., Khazieieva O.A.
et al. Nanocomposite of polyaniline with partially
oxidized graphene as the transport layer of light-
emitting polymer diodes. Theor. Exp. Chem. 2014.
50, No 2. P. 96-102. 10.1007/s11237-014-9352-z.
21. Kutulya L.A., Semenkova G.P., Shkolnikova N.I.
et al. New N-arylidene (S)-1-phenylethylamines as
the components of induced short-pitch cholesterics.
Mol. Cryst. Liq. Cryst. Sect. A. 2001. 357, No 1. P.
43-54. https://doi.org/10.1080/10587250108028243
22. Kozachenko A., Nazarenko V., Sorokin V. et al. Syn-
thesis and properties of chiral dopants synthesized
on the base of 2-methylbutanol and e-menthol. Mol.
Cryst. Liq. Cryst. Sect. A. 1998. 324, No 1. P. 251-256. https://doi.org/10.1080/10587259808047162
23. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. et al.
Determination of optical parameters in quasi-
monochromatic LEDs for implementation of
lighting systems with tunable correlated color
temperature. SPQEO. 2022. 25. P. 303-314.
https://doi.org/10.15407/spqeo25.03.303
24. Minyailo A.M., Pekur I.V., Kornaga V.I. et al.
Optimizing the spectral composition of light from
LED phytolighting systems to improve energy
efficiency. SPQEO. 2023. 26. P. 463-469.
https://doi.org/10.15407/spqeo26.04.463
| |
|
|