Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 083-092 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.083
References
1. Chen J., Fu I.K., Lee S.P. LiF:F 2 - as a high
repetition rate Nd:YAG laser passive modulator.
Appl. Opt. 1990. 29, No 18. P. 2669-2674.
https://doi.org/10.1364/AO.29.002669
2. Chen Y.F., Tsai S.W., Wang S.C., Chen J. A diode-
pumped high power Q-switched and self-mode-
locked Nd:YVO 4 laser with a LiF:F 2 - saturable
absorber. Appl. Phys. B. 2001. 73. P. 115-118.
https://doi.org/10.1007/s003400100615
3. Carson C.G., Goueguel C.L., Sanghapi H. et al.
Evaluation of a commercially available passively Q-
switched Nd:YAG laser with LiF:F 2 - saturable
absorber for laser-induced breakdown spectroscopy.
Opt. Laser Technol. 2016. 79. P. 146-152.
http://doi.org/10.1016/j.optlastec.2015.12.004
4. Shimony Y., Burshtein Z., Kalisky Y. Cr 4+ :YAG as
passive Q-switch and Brewster plate in a pulsed
Nd:YAG laser. IEEE J. Quantum Electron. 1995.
QE-31, No 10. P. 1738-1741.
https://doi.org/10.1109/3.466043
5. Jazi M.E., Baghi M.D., Hajimahmodzadeh,
Soltanolkotabi M. Pulsed Nd:YAG passive Q-
switched laser using Cr 4+ :YAG crystal. Opt. M.
Laser Technol. 2012. 44. P. 522-527.
https://doi.org/10.1016/j.optlastec.2011.08.013
6. Maleki A., Dindarlu M.H.M., Saghafifar H. et al.
57 mJ with 10 ns passively Q-switched diode
pumped Nd:YAG laser using Cr 4+ :YAG crystal.
Opt. Quant. Electron. 2016. 48. P. 1-12.
https://doi.org/10.1007/s11082-015-0332-x
7. Efimov O.M., Mekryukov A.M., Reiterov V.M.
Optical breakdown of crystals containing radiation-
generated color centers. Sov. J. Quantum Electron.
1989. 19, No 12. P. 1620-1623. https://
doi.org/10.1070/QE1989v019n12ABEH009838.
8. Bezrodnyi V.I., Ishchenko A.A. High-energy single
pulse and multi-spike operation with a passive
polymer Q-switch. Opt. Laser Technol. 2002. 34.
P. 7-13. https://doi.org/10.1016/S0030-3992(01)00080-9
9. Bezrodnyi V.I., Vovk L.V., Derevyanko N.A. et al.
nanosecond polymer passive switch for neodymium
lasers. Quantum Electron. 1995. 25. P. 229-231.
https://doi.org/10.1070/
QE1995v025n03ABEH000332.
10. Chen J., Kung H.-Ch., Yau H.-F. et al. Passive
Q-switches for Nd:hosted solid state lasers. Opt.
Rev. 2000. 7, No 6. P. 511-519.
https://doi.org/10.1007/s10043-000-0511-1
11. Bezrodnyi V.I., Derevyanko N.A., Ishchenko A.A.,
Kropachev A.V. Highly efficient passive Q-
switches for a neodymium laser based on
thiopyrylotricarbocyanine dyes. Quantum Electron.
2009. 39, No 1. P. 79-83.
https://doi.org/10.1070/
QE2009V039N01ABEH013832.
12. Gromov D.A., Dyumaev K.M., Manenkov A.A.
et al. Efficient plastic-host dye lasers. J. Opt. Soc.
Am. B. 1985. 2. P. 1028-1031.
https://doi.org/10.1364/JOSAB.2.001028
13. Bezrodnyi V.I., Tikhonov E.A. Polymer passive
Q-switch. Quantum Electron. 1986. 13, No 12.
P. 2486-2490. https://doi.org/10.1070/
QE1986v016n12ABEH008515.
14. Dyumaev K.M., Manenkov A.A., Maslyukov A.P.
et al. Dyes in modified polymers: problems of
photostability and conversion efficiency at high
intensities. J. Opt. Soc. Am. B. 1992. 9. P. 143-151.
https://doi.org/10.1364/JOSAB.2.001028
15. Bezrodna T.V., Bezrodnyi V.I., Negriyko A.M.,
Kosyanchuk L.F. Spectral, photophysical and lasing
properties of Rhodamine dyes in the polyurethane
acrylate matrix. Opt. Laser Technol. 2021. 138.
P. 106868.
https://doi.org/10.1016/j.optlastec.2020.106868
16. Ishchenko A.A. Molecular engineering of dye-
doped polymers for optoelectronics. Polym. Adv.
Technol. 2002. 13, No 10-12. P. 744-752.
https://doi.org/10.1002/pat.269
17. Kosyanchuk L.F., Kozak N.V., Babkina N.V. et al.
Irradiation effects and beam strength in
polyurethane materials for laser elements. Opt.
Mater. 2018. 85. P. 408-413.
https://doi.org/10.1016/j.optmat.2018.09.010
18. Bezrodna T., Negryiko A., Bezrodnyi V.,
Kosyanchuk L. Dipole moments of phenalenone
dyes determined in liquid and polymer polar media.
J. Mol. Liq. 2018. 267. P. 89-95.
https://doi.org/10.1016/j.molliq.2018.02.071
19. Kosyanchuk L.F., Kozak N.V., Babkina N.V. et al.
The dynamic characteristics of polyurethane matrix
of dye laser solid-state active elements. Fr.-Ukr. J.
Chem. 2016. 4, No 2. P. 40-46.
https://doi.org/10.17721/fujcV4I2P40-46
20. Purnima, Mohan D., Gupta U., Jyoti D. Laser
induced optical bistability in nickel-complex dye. J.
Opt. 2012. 41, No 3. P. 173-177.
https://doi.org/10.1007/s12596-012-0081-1
21. Purnima, Mohan D., Rani S. Optical nonlinear
refractive and limiting behavior of nickel complex
dye doped solid-state matrix for both visible and
near infra-red nanosecond excitations. Optik. 2013.
124. P. 1741-1745.
http://doi.org/10.1016/j.ijleo.2012.05.011
22. Ishchenko A.A. Structure and Spectral-Luminescent
Properties of Polymethine Dyes. Naukova Dumka,
Kiev, 1994.
23. Prosposito P., Casalboni M., De Matteis F. et al. IR-
luminescent molecules in hybrid materials. J. Sol-
Gel Sci. Technol. 2003. 26. P. 909-913.
https://doi.org/10.1023/A:1020732623656
24. Bogdanovich M.V., Bondarev S.L., Dudikov V.N.
et al. Polymethine dye-based optical compounds for
diode pumped Nd:YAG laser systems. Optik. 2021.
245. P. 167634.
https://doi.org/10.1016/j.ijleo.2021.167634
25. Enmanji K. Bleaching of bis[l-(4-dimethylamino
phenyl)-2-phenylethanedithione]-nickel(0) in
polymer solution and polymer matrix. Bull. Chem.
Soc. Jpn. 1987. 60, No 9. P. 3087-3092.
https://doi.org/10.1246/bcsj.60.3087
26. Bezrodnyi V.I., Ishchenko A.A. High efficiency
lasing of a dye-doped polymer laser with 1.06 ?m
pumping. Appl. Phys. B. 2001. 73, No 3. P. 283-285. https://doi.org/10.1007/s003400100646
27. Ishchenko A.A., Kurdyukova I.V., Bogdanovich
M.V. et al. Electronic structure and spectral-fluo-
rescent properties of thiopyrylo-4-tricarbocyanine
laser dyes. Opt. Spectrosc. 2021. 129. P. 926-934.
https://doi.org/10.1134/S0030400X21070080
28. Degnan J.J. Optimization of passively Q-switched
lasers. IEEE J. Quantum Electron. 1995. 31,
No 11. P. 1890-1901.
https://doi.org/10.1109/3.469267
29. Musset O., Boquillon J.P. Flashlamp-pumped
Nd:KGW laser at repetition rates up to 50 Hz. Appl.
Phys. B. 1997. 65. P. 13-18.
https://doi.org/10.1007/s003400050242
| |
|
|