Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 109-120 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.109
References
1. Janata J., Josowicz M. Conducting polymers in
electronic chemical sensors. Nat. Mater. 2003. 2.
P. 19-24. https://doi.org/10.1038/NMAT768
2. Haynes A., Gouma P. I. Perspective - conducting
polymer hybrids as diagnostic chemosensors. J.
Electrochem. Soc. 2022. 169. Art. id. 037513.
https://doi.org/10.1149/1945-7111/ac5baf
3. Ogurtsov N.A., Noskov Yu.V., Kruglyak O.S. et al.
Effect of the dopant anion and oxidant on the
structure and properties of nanocomposites of
polypyrrole and carbon nanotubes. Theor. Experim.
Chem. 2018. 54. P. 114-121.
https://doi.org/10.1007/s11237-018-9554-x
4. Le T.-H., Kim Y., Yoon H. Electrical and
electrochemical properties of conducting polymers.
Polymers. 2017. 9. Art. id. 150.
https://doi.org/10.3390/polym9040150
5. Cabala R., Meister V., Potje-Kamloth K. Effect of
competitive doping on sensing properties of
polypyrrole. J. Chem. Soc. Faraday Trans. 1997.
93. P. 131-137. https://doi.org/10.1039/A604780G
6. Pud A.A., Ogurtsov N.A., Noskov Yu.V. et al. On
the importance of interface interactions in core-shell
nanocomposites of intrinsically conducting
polymers. SPQEO. 2019. 22. P. 470-478.
https://doi.org/10.15407/spqeo22.04.470
7. Zhang W., Cao S., Wu Z. et al. High-performance
gas sensor of polyaniline/carbon nanotube composites
promoted by interface engineering. Sensors. 2020.
20. Art. id. 149. https://doi.org/10.3390/s20010149
8. Mikhaylov S., Ogurtsov N., Noskov Y. et al.
Ammonia/amines electronic gas sensors based on
hybrid polyaniline-TiO 2 nanocomposites. The
effects of titania and the surface active doping acid.
RSC Adv. 2015. 5. P. 20218-20226.
https://doi.org/10.1039/C4RA16121A
9. Ogurtsov N.A., Bliznyuk V.N., Mamykin A.V.
et al. Poly(vinylidene fluoride)/poly (3-methylthio-
phene) core-shell nanocomposites with improved
structural and electronic properties of the
conducting polymer component. Phys. Chem.
Chem. Phys. 2018. 20. P. 6450-6461.
https://doi.org/10.1039/C7CP07604E
10. Yan Y., Yang G., Xu J.-L. et al. Conducting poly-
mer-inorganic nanocomposite-based gas sensors: a
review. Sci. Technol. Adv. Mater. 2020. 21 P. 768-786. https://doi.org/10.1080/14686996.2020.1820845
11. Liu X., Zheng W., Kumar R. et al. Conducting
polymer-based nanostructures for gas sensors.
Coord. Chem. Rev. 2022. 462. Art. id. 214517.
https://doi.org/10.1016/j.ccr.2022.214517
12. Ogurtsov N.A., Mamykin A.V., Kukla O.L. et al.
The impact of interfacial interactions on structural,
electronic and sensing properties of poly(3-
methylthiophene) in the core-shell nanocomposites.
Application to the CWA simulants detection.
Macromol. Mater. Eng. 2022. 307. Art. id.
2100762. https://doi.org/10.1002/mame.202100762
13. Qu K., Dai W., He T. Unique tunability to
conducting polymer enabled by ionic liquid doping
and its application in nitrite sensing. J. Electrochem.
Soc. 2022. 169. Art. id. 106520.
https://doi.org/10.6520 10.1149/1945-7111/ac9b99.
14. Annibaldi V., Hendy G.M., Breslin C.B. Studies on
the formation and properties of polypyrrole doped
with ionised ?-cyclodextrins: influence of the
anionic pendants. J. Solid. State Electrochem. 2019.
23. P. 615-626. https://doi.org/10.1007/s10008-018-04171-8
15. Waghmode B.J., Husain Z., Joshi M. et al. Synthesis
and study of calixarene-doped polypyrrole-TiO 2 /ZnO
composites: Antimicrobial activity and electroche-
mical sensors. J. Polym. Res. 2016. 23. Art. id. 35.
https://doi.org/10.1007/s10965-016-0921-9
16. Trung V.Q., Hung H.M., Khoe L.V. et al. Synthesis
and characterization of polypyrrole film doped with
both molybdate and salicylate and its application in
the corrosion protection for low carbon steel. ACS
Omega. 2022. 7. P. 19842-19852.
https://doi.org/10.1021/acsomega.2c01561
17. Shahrim N.A., Ahmad Z., Azman A.W. et al.
Mechanisms for doped PEDOT:PSS electrical
conductivity improvement. Mater. Adv. 2021. 2. P.
7118-7138. https://doi.org/10.1039/d1ma00290b
18. Hwang J., Oh T., Kim S. et al. Effect of solvent on
electrical conductivity and gas sensitivity of PEDOT:
PSS polymer composite films. J. Appl. Polym. Sci.
2015. 132. https://doi.org/10.1002/app.42628
19. Setiawan R.C., Li D.Y. Tuning the conductivity and
electron work function of a spin-coated
PEDOT:PSS/PEO nanofilm for enhanced interfacial
adhesion. Langmuir. 2021. 37. P. 4924-4932.
https://doi.org/10.1021/acs.langmuir.1c00147
20. Jia Y., Li X., Jiang F. et al. Effects of additives and
post-treatment on the thermoelectric performance of
vapor-phase polymerized PEDOT films. J. Polym.
Sci. Part B. 2017. 55. P. 1738-1744.
https://doi.org/10.1002/polb.24422
21. Tseng Y.-T., Lin Y.-C., Shih C.-C. et al. Morphology
and properties of PEDOT:PSS/soft polymer blends
through hydrogen bonding interaction and their
pressure sensor application. J. Mater. Chem. C. 2020.
8. P. 6013-6024. https://doi.org/10.1039/d0tc00559b
22. Cen L., Neoh K.G., Kang E.T. Surface functiona-
lization of electrically conductive polypyrrole film
with hyaluronic acid. Langmuir. 2008. 18. P. 8633-8640. https://doi.org/10.1021/la025979b
23. Alizadeh N., Pirsa S., Mani-Varnosfaderani A.,
Alizadeh M.S. Design and fabrication of open-
tubular array gas sensors based on conducting
polypyrrole modified with crown ethers for
simultaneous determination of alkylamines. IEEE
Sens. J. 2015. 15. P. 4130-4136.
https://doi.org/10.1109/JSEN.2015.2411515
24. Neri P., Sessler J.L., Wang M.-X. (Eds.)
Calixarenes and Beyond. Springer Cham, 2016.
https://doi.org/10.1007/978-3-319-31867-7
25. Kumar S., Chawla S., Zou M.C. Calixarenes based
materials for gas sensing applications: a review. J.
Incl. Phenom. Macrocycl. Chem. 2017. 88. P. 129-158. https://doi.org/10.1007/s10847-017-0728-2
26. Deska M., Dondela B., Sliwa W. Selected
applications of calixarene derivatives. ARKIVOC.
2015. P. 393-416.
http://doi.org/10.3998/ark.5550190.p008.958
27. Mamykin A.V., Kukla O.L., Pavluchenko A.S.
et al. “Electronic nose”-type chemosensory systems
for detection of gaseous poisonous substances.
SPQEO. 2022. 25. P. 429-440.
https://doi.org/10.15407/spqeo25.04.429
28. Lavrik N.V., De Rossi D., Kazantseva Z.I. et al.
Composite polyaniline/calixarene Langmuir-
Blodgett films for gas sensing. Nanotechnology.
1996. 7. P. 315-319. https://doi.org/10.1088/0957-4484/7/4/002
29. Wang F., Yang Y., Swager T.M. Molecular
recognition for high selectivity in carbon
nanotube/polythiophene chemiresistors. Angew.
Chem. Int. Ed. 2008. 47. P. 8394-8396.
http://doi.org/10.1002/anie.200802762
30. Lu R.-Q., Luo S.-X.L., He Q. et al. Methane
detection with a tungsten-calix[4]arene-based
conducting polymer embedded sensor array. Adv.
Funct. Mater. 2020. 31. Art. id. 2007281.
https://doi.org/10.1002/adfm.202007281
31. Lugovskoy E.V., Gritsenko P.G., Koshel T.A. et al.
Calix[4]arene methylenebisphosphonic acids as
inhibitors of fibrin polymerization. FEBS J. 2011.
278. P. 1244-1251.
https://doi.org/10.1111/j.1742-4658.2011.08045.x
32. Shinkai S., Araki K., Tsubaki T. et al. New
syntheses of calixarene-p-sulphonates and p-
nitrocalixarenes. J. Chem. Soc. Perkin Trans. 1987.
1. P. 2297-2299.
https://doi.org/10.1039/P19870002297
33. Kosti? R., Rakovi? D., Stepanyan S.A. et al.
Vibrational spectroscopy of polypyrrole, theoretical
study. J. Chem. Phys. 1995. 102. P. 3104-3109.
https://doi.org/10.1063/1.468620
34. Kofranek M., Kov?? T., Karpfen A., Lischka H.
Ab initio studies on heterocyclic conjugated poly-
mers: Structure and vibrational spectra of pyrrole,
oligopyrroles, and polypyrrole. J. Chem. Phys. 1992.
96. P. 4464-4473. https://doi.org/10.1063/1.462809
35. Christensen P.A., Hamnett A. In situ spectroscopic
investigations of the growth, electrochemical cycling
and overoxidation of polypyrrole in aqueous solu-
tion. Electrochim. Acta. 1991. 36. P. 1263-1286.
https://doi.org/10.1016/0013-4686(91)80005-S
36. Larkin P. Infrared and Raman Spectroscopy: Prin-
ciples and Spectral Interpretation. Elsevier, 2017.
37. Amiri A., Babaeie F., Monajjemi M. Vibrational
analysis of p-tert-butyl-calix[4]arene conformers by
ab initio calculations. Phys. Chem. Liq. 2008. 46. P.
379-389.
https://doi.org/10.1080/00319100701344610
38. Furer V.L. Vandyukov A.E., Kleshnina S.R. et al.
DFT study of conformation, hydrogen bonds, IR,
and Raman spectra of the sodium salt of p-
hexasulfonatocalix[6]arene. J. Mol. Struct. 2021.
1243. Art. id. 130892.
https://doi.org/10.1016/j.molstruc.2021.130892
39. Atwood J.L., Hamada F., Robinson K.D. et al. X-
ray diffraction evidence for aromatic ? hydrogen
bonding to water. Nature. 1991. 349. P. 683-684.
https://doi.org/10.1038/349683a0
40. Gliboff M., Sang L., Knesting K.M. et al.
Orientation of phenylphosphonic acid self-
assembled monolayers on a transparent conductive
oxide: a combined NEXAFS, PM-IRRAS, and DFT
study. Langmuir. 2013. 29. P. 2166-2174.
https://doi.org/10.1021/la304594t
41. Lei J., Cai Z., Martin C.R. Effect of reagent
concentrations used to synthesize polypyrrole on the
chemical characteristics and optical and electronic
properties of the resulting polymer. Synth. Met.
1992. 46. P. 53-69.
https://doi.org/10.1016/0379-6779(92)90318-D
42. Tian B., Zerbi G. Lattice dynamics and vibrational
spectra of pristine and doped polypyrrole: effective
conjugation coordinate. J. Chem. Phys. 1990. 92.
P. 3892-3898. https://doi.org/10.1063/1.457795
43. Maia G., Ticianelli E.A., Nart F.C. FTIR
investigation of the polypyrrole oxidation in
Na 2 SO 4 and NaNO 3 aqueous solutions. Z. Phys.
Chem. 1994. 186. P. 245-257.
https://doi.org/10.1524/zpch.1994.186.Part_2.245
44. Sevrain C.M., Berchel M., Couthon H., Jaffr?s P.A.
Phosphonic acid: preparation and applications.
Beilstein J. Org. Chem. 2017. 13. P. 2186-2213.
https://doi.org/10.3762/bjoc.13.219
45. Pei Q., Qian R. Protonation and deprotonation of
polypyrrole chain in aqueous solutions. Synth. Met.
1991. 45. P. 35-48. https://doi.org/10.1016/0379-6779(91)91845-2
46. Araki K., Iwamoto K., Shinkai S., Matsuda T.
“pKa” of calixarenes and analogs in nonaqueous
solvents. Bull. Chem. Soc. Jpn. 1990. 63. P. 3480-3485. https://doi.org/10.1246/bcsj.63.3480
47. Brzezinski B., Urjasz H., Zundel G. Cyclic
hydrogen-bonded system with large proton
polarizability in calixarenes an FT-IR study. J.
Phys. Chem. 1996. 100. P. 9021-9023.
https://doi.org/10.1021/jp9535396
48. Sarkar T. Srinives S., Rodriquez A., Mulchandani
A. Single-walled carbon nanotube-calixarene based
chemiresistor for volatile organic compounds.
Electroanalysis. 2018. 30. P. 2077-2084.
http://doi.org/10.1002/elan.201800199
49. Sarkar T., Srinives S. Single-walled carbon
nanotubes-calixarene hybrid for sub-ppm detection
of NO 2 . Microelectron. Eng. 2018. 197. P. 28-32.
https://doi.org/10.1016/j.mee.2018.05.004
50. Ozmen M., Ozbek Z., Buyukcelebi S. et al.
Fabrication of Langmuir-Blodgett thin films of
calix[4]arenes and their gas sensing properties:
Investigation of upper rim para substituent effect.
Sens. Act. B: Chem. 2014. 190. P. 502-511.
https://doi.org/10.1016/j.snb.2013.09.008
| |
|
|