Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 109-120 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.109


References


1. Janata J., Josowicz M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003. 2. P. 19-24. https://doi.org/10.1038/NMAT768
2. Haynes A., Gouma P. I. Perspective - conducting polymer hybrids as diagnostic chemosensors. J. Electrochem. Soc. 2022. 169. Art. id. 037513. https://doi.org/10.1149/1945-7111/ac5baf
3. Ogurtsov N.A., Noskov Yu.V., Kruglyak O.S. et al. Effect of the dopant anion and oxidant on the structure and properties of nanocomposites of polypyrrole and carbon nanotubes. Theor. Experim. Chem. 2018. 54. P. 114-121. https://doi.org/10.1007/s11237-018-9554-x
4. Le T.-H., Kim Y., Yoon H. Electrical and electrochemical properties of conducting polymers. Polymers. 2017. 9. Art. id. 150. https://doi.org/10.3390/polym9040150
5. Cabala R., Meister V., Potje-Kamloth K. Effect of competitive doping on sensing properties of polypyrrole. J. Chem. Soc. Faraday Trans. 1997.
93. P. 131-137. https://doi.org/10.1039/A604780G
6. Pud A.A., Ogurtsov N.A., Noskov Yu.V. et al. On the importance of interface interactions in core-shell nanocomposites of intrinsically conducting polymers. SPQEO. 2019. 22. P. 470-478. https://doi.org/10.15407/spqeo22.04.470
7. Zhang W., Cao S., Wu Z. et al. High-performance gas sensor of polyaniline/carbon nanotube composites promoted by interface engineering. Sensors. 2020.
20. Art. id. 149. https://doi.org/10.3390/s20010149
8. Mikhaylov S., Ogurtsov N., Noskov Y. et al. Ammonia/amines electronic gas sensors based on hybrid polyaniline-TiO 2 nanocomposites. The effects of titania and the surface active doping acid. RSC Adv. 2015. 5. P. 20218-20226. https://doi.org/10.1039/C4RA16121A
9. Ogurtsov N.A., Bliznyuk V.N., Mamykin A.V. et al. Poly(vinylidene fluoride)/poly (3-methylthio- phene) core-shell nanocomposites with improved structural and electronic properties of the conducting polymer component. Phys. Chem. Chem. Phys. 2018. 20. P. 6450-6461. https://doi.org/10.1039/C7CP07604E
10. Yan Y., Yang G., Xu J.-L. et al. Conducting poly- mer-inorganic nanocomposite-based gas sensors: a review. Sci. Technol. Adv. Mater. 2020. 21 P. 768-786. https://doi.org/10.1080/14686996.2020.1820845
11. Liu X., Zheng W., Kumar R. et al. Conducting polymer-based nanostructures for gas sensors. Coord. Chem. Rev. 2022. 462. Art. id. 214517. https://doi.org/10.1016/j.ccr.2022.214517
12. Ogurtsov N.A., Mamykin A.V., Kukla O.L. et al. The impact of interfacial interactions on structural, electronic and sensing properties of poly(3- methylthiophene) in the core-shell nanocomposites. Application to the CWA simulants detection. Macromol. Mater. Eng. 2022. 307. Art. id.
2100762. https://doi.org/10.1002/mame.202100762
13. Qu K., Dai W., He T. Unique tunability to conducting polymer enabled by ionic liquid doping and its application in nitrite sensing. J. Electrochem. Soc. 2022. 169. Art. id. 106520. https://doi.org/10.6520 10.1149/1945-7111/ac9b99.
14. Annibaldi V., Hendy G.M., Breslin C.B. Studies on the formation and properties of polypyrrole doped with ionised ?-cyclodextrins: influence of the anionic pendants. J. Solid. State Electrochem. 2019.
23. P. 615-626. https://doi.org/10.1007/s10008-018-04171-8
15. Waghmode B.J., Husain Z., Joshi M. et al. Synthesis and study of calixarene-doped polypyrrole-TiO 2 /ZnO composites: Antimicrobial activity and electroche- mical sensors. J. Polym. Res. 2016. 23. Art. id. 35. https://doi.org/10.1007/s10965-016-0921-9
16. Trung V.Q., Hung H.M., Khoe L.V. et al. Synthesis and characterization of polypyrrole film doped with both molybdate and salicylate and its application in the corrosion protection for low carbon steel. ACS Omega. 2022. 7. P. 19842-19852. https://doi.org/10.1021/acsomega.2c01561
17. Shahrim N.A., Ahmad Z., Azman A.W. et al. Mechanisms for doped PEDOT:PSS electrical conductivity improvement. Mater. Adv. 2021. 2. P. 7118-7138. https://doi.org/10.1039/d1ma00290b
18. Hwang J., Oh T., Kim S. et al. Effect of solvent on electrical conductivity and gas sensitivity of PEDOT: PSS polymer composite films. J. Appl. Polym. Sci.
2015. 132. https://doi.org/10.1002/app.42628
19. Setiawan R.C., Li D.Y. Tuning the conductivity and electron work function of a spin-coated PEDOT:PSS/PEO nanofilm for enhanced interfacial adhesion. Langmuir. 2021. 37. P. 4924-4932. https://doi.org/10.1021/acs.langmuir.1c00147
20. Jia Y., Li X., Jiang F. et al. Effects of additives and post-treatment on the thermoelectric performance of vapor-phase polymerized PEDOT films. J. Polym. Sci. Part B. 2017. 55. P. 1738-1744. https://doi.org/10.1002/polb.24422
21. Tseng Y.-T., Lin Y.-C., Shih C.-C. et al. Morphology and properties of PEDOT:PSS/soft polymer blends through hydrogen bonding interaction and their pressure sensor application. J. Mater. Chem. C. 2020.
8. P. 6013-6024. https://doi.org/10.1039/d0tc00559b
22. Cen L., Neoh K.G., Kang E.T. Surface functiona- lization of electrically conductive polypyrrole film with hyaluronic acid. Langmuir. 2008. 18. P. 8633-8640. https://doi.org/10.1021/la025979b
23. Alizadeh N., Pirsa S., Mani-Varnosfaderani A., Alizadeh M.S. Design and fabrication of open- tubular array gas sensors based on conducting polypyrrole modified with crown ethers for simultaneous determination of alkylamines. IEEE Sens. J. 2015. 15. P. 4130-4136. https://doi.org/10.1109/JSEN.2015.2411515
24. Neri P., Sessler J.L., Wang M.-X. (Eds.) Calixarenes and Beyond. Springer Cham, 2016. https://doi.org/10.1007/978-3-319-31867-7
25. Kumar S., Chawla S., Zou M.C. Calixarenes based materials for gas sensing applications: a review. J. Incl. Phenom. Macrocycl. Chem. 2017. 88. P. 129-158. https://doi.org/10.1007/s10847-017-0728-2
26. Deska M., Dondela B., Sliwa W. Selected applications of calixarene derivatives. ARKIVOC.
2015. P. 393-416. http://doi.org/10.3998/ark.5550190.p008.958
27. Mamykin A.V., Kukla O.L., Pavluchenko A.S. et al. “Electronic nose”-type chemosensory systems for detection of gaseous poisonous substances. SPQEO. 2022. 25. P. 429-440. https://doi.org/10.15407/spqeo25.04.429
28. Lavrik N.V., De Rossi D., Kazantseva Z.I. et al. Composite polyaniline/calixarene Langmuir- Blodgett films for gas sensing. Nanotechnology.
1996. 7. P. 315-319. https://doi.org/10.1088/0957-4484/7/4/002
29. Wang F., Yang Y., Swager T.M. Molecular recognition for high selectivity in carbon nanotube/polythiophene chemiresistors. Angew. Chem. Int. Ed. 2008. 47. P. 8394-8396. http://doi.org/10.1002/anie.200802762
30. Lu R.-Q., Luo S.-X.L., He Q. et al. Methane detection with a tungsten-calix[4]arene-based conducting polymer embedded sensor array. Adv. Funct. Mater. 2020. 31. Art. id. 2007281. https://doi.org/10.1002/adfm.202007281
31. Lugovskoy E.V., Gritsenko P.G., Koshel T.A. et al. Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization. FEBS J. 2011.
278. P. 1244-1251. https://doi.org/10.1111/j.1742-4658.2011.08045.x
32. Shinkai S., Araki K., Tsubaki T. et al. New syntheses of calixarene-p-sulphonates and p- nitrocalixarenes. J. Chem. Soc. Perkin Trans. 1987.
1. P. 2297-2299. https://doi.org/10.1039/P19870002297
33. Kosti? R., Rakovi? D., Stepanyan S.A. et al. Vibrational spectroscopy of polypyrrole, theoretical study. J. Chem. Phys. 1995. 102. P. 3104-3109. https://doi.org/10.1063/1.468620
34. Kofranek M., Kov?? T., Karpfen A., Lischka H. Ab initio studies on heterocyclic conjugated poly- mers: Structure and vibrational spectra of pyrrole, oligopyrroles, and polypyrrole. J. Chem. Phys. 1992.
96. P. 4464-4473. https://doi.org/10.1063/1.462809
35. Christensen P.A., Hamnett A. In situ spectroscopic investigations of the growth, electrochemical cycling and overoxidation of polypyrrole in aqueous solu- tion. Electrochim. Acta. 1991. 36. P. 1263-1286. https://doi.org/10.1016/0013-4686(91)80005-S
36. Larkin P. Infrared and Raman Spectroscopy: Prin- ciples and Spectral Interpretation. Elsevier, 2017.
37. Amiri A., Babaeie F., Monajjemi M. Vibrational analysis of p-tert-butyl-calix[4]arene conformers by ab initio calculations. Phys. Chem. Liq. 2008. 46. P. 379-389. https://doi.org/10.1080/00319100701344610
38. Furer V.L. Vandyukov A.E., Kleshnina S.R. et al. DFT study of conformation, hydrogen bonds, IR, and Raman spectra of the sodium salt of p- hexasulfonatocalix[6]arene. J. Mol. Struct. 2021.
1243. Art. id. 130892. https://doi.org/10.1016/j.molstruc.2021.130892
39. Atwood J.L., Hamada F., Robinson K.D. et al. X- ray diffraction evidence for aromatic ? hydrogen bonding to water. Nature. 1991. 349. P. 683-684. https://doi.org/10.1038/349683a0
40. Gliboff M., Sang L., Knesting K.M. et al. Orientation of phenylphosphonic acid self- assembled monolayers on a transparent conductive oxide: a combined NEXAFS, PM-IRRAS, and DFT study. Langmuir. 2013. 29. P. 2166-2174. https://doi.org/10.1021/la304594t
41. Lei J., Cai Z., Martin C.R. Effect of reagent concentrations used to synthesize polypyrrole on the chemical characteristics and optical and electronic properties of the resulting polymer. Synth. Met.
1992. 46. P. 53-69. https://doi.org/10.1016/0379-6779(92)90318-D
42. Tian B., Zerbi G. Lattice dynamics and vibrational spectra of pristine and doped polypyrrole: effective conjugation coordinate. J. Chem. Phys. 1990. 92. P. 3892-3898. https://doi.org/10.1063/1.457795
43. Maia G., Ticianelli E.A., Nart F.C. FTIR investigation of the polypyrrole oxidation in Na 2 SO 4 and NaNO 3 aqueous solutions. Z. Phys. Chem. 1994. 186. P. 245-257. https://doi.org/10.1524/zpch.1994.186.Part_2.245
44. Sevrain C.M., Berchel M., Couthon H., Jaffr?s P.A. Phosphonic acid: preparation and applications. Beilstein J. Org. Chem. 2017. 13. P. 2186-2213. https://doi.org/10.3762/bjoc.13.219
45. Pei Q., Qian R. Protonation and deprotonation of polypyrrole chain in aqueous solutions. Synth. Met.
1991. 45. P. 35-48. https://doi.org/10.1016/0379-6779(91)91845-2
46. Araki K., Iwamoto K., Shinkai S., Matsuda T. “pKa” of calixarenes and analogs in nonaqueous solvents. Bull. Chem. Soc. Jpn. 1990. 63. P. 3480-3485. https://doi.org/10.1246/bcsj.63.3480
47. Brzezinski B., Urjasz H., Zundel G. Cyclic hydrogen-bonded system with large proton polarizability in calixarenes an FT-IR study. J. Phys. Chem. 1996. 100. P. 9021-9023. https://doi.org/10.1021/jp9535396
48. Sarkar T. Srinives S., Rodriquez A., Mulchandani A. Single-walled carbon nanotube-calixarene based chemiresistor for volatile organic compounds. Electroanalysis. 2018. 30. P. 2077-2084. http://doi.org/10.1002/elan.201800199
49. Sarkar T., Srinives S. Single-walled carbon nanotubes-calixarene hybrid for sub-ppm detection of NO 2 . Microelectron. Eng. 2018. 197. P. 28-32. https://doi.org/10.1016/j.mee.2018.05.004
50. Ozmen M., Ozbek Z., Buyukcelebi S. et al. Fabrication of Langmuir-Blodgett thin films of calix[4]arenes and their gas sensing properties: Investigation of upper rim para substituent effect. Sens. Act. B: Chem. 2014. 190. P. 502-511. https://doi.org/10.1016/j.snb.2013.09.008