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Abstract. Semiconductor materials are vital for present-day technologies for light emitters, 

sensors and actuators, computation and memory devices as well as energy harvesting and 

storage. At the same time, nanostructures based on semiconductors trigger fast technology 

development and creation of materials with principally new properties due to quantum 

confinement effects. The SPQEO journal pays attention to the modern development of such 

area as physics of nanoparticles and nanostructures. During recent years, it published 

articles on semiconductor nanocrystals, quantum dots, thin lattices, including their growth, 

characterization, study of physical properties and theoretical description. 
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1. Semiconductor nanostructures 

Real progress of semiconductor materials runs from 

volume devices in 50
th
 through micro- to nanosized ones 

at the beginning of 1990th [1]. With time, the creation of 

semiconductor nanomaterials brings a burst of the 

creation of new materials with unique properties and the 

development of electronic, optoelectronic and quantum 

technologies. Nowadays, semiconductor nanostructures 

are the most intensively investigated materials, which 

allow new inventions and optimization of current 

technologies [2,3]. 

The term ‘nanomaterial’, or ‘nanostructure’, is 

rather general and means a class of a solid, when one its 

external dimension is below 100 nm. Considering 

geometry, nanostructures are divided depending on the 

number of non-confined dimensions: two-dimensional 

(2D) quantum wells, nanofilms, flakes or sheets; 1D 

nanowires (NW); and 0D quantum dots (QD) or 

nanocrystals (NC) [1,4]. Modelling examples of such 

structures are presented in Fig. 1 [5]. However, a 

nanomaterial has properties different from its bulk 

counterpart only when one its dimension is lower than 

about 40 nm (varied upon a type of materials). This 

occurs due to strong quantum confinement effect –spatial 

confinement of electrons and holes or their pairs 

(excitons) in one or more dimensions within a crystal. 

Such condition results in increasing bandgap and discrete 

electronic energy levels due to the confinement of the 
electronic wave function to the physical dimensions of a 
material (Fig. 1) [2-6]. Structures with sizes of 

approximately 40-100 nm may have properties dissimilar 
compared to their bulks due to week quantum confinement 
effect, changes in crystal geometry, new defects, or other 
reasons. Microporous and nanoporous semiconductor 

structures, nanocavities or big nanoparticles (NPs) are also 
classified as nanomaterials because their structures lead to 
modifications of their physical properties or provide 

additional material capacities [7]. Nevertheless, the 
presented classification is rather generalized, so most kinds 
of nanomaterials can be divided into groups by peculiar 

structure, preparation method or application.  
Semiconductor nanomaterials have revolutionized 

many areas of optoelectronics and photonics due to the 
discovery of new fundamental phenomena via quantum 

confinement effects to tailor the material bandgap and 
emission intensity as well as the exponential growth in 
technological nanodevice applications. Light-emitting 

nanodevices are applied for light sources of ultraviolet 
(UV), visible (Vis) and infrared (IR) ranges, displays, 
indicators, etc. Light-detecting nanostructures, such as 

photodiodes, photovoltaic solar cells, photoresistors and 
phototransistors, convert incident electromagnetic 
radiation into electric current or voltage with advanced 
performances [4]. 

 

mailto:serge@szu.edu.cn


SPQEO, 2025. V. 28, No 1. P. 004-009. 

Belyaev A., Maksimenko Z., Golovynskyi S., Kravchenko V.M., Smertenko P. Semiconductor nanomaterials… 

005 

 

Fig. 1. Schematic illustration of the energy level structure of a 

bulk material and nanostructures with reduced dimensionality: 

2D crystal lattice or quantum well, 1D quantum wire, 0D 
nanocrystal or quantum dot. DOS represents the density of 

electronic states. The bandgap of a semiconductor nanocrystal 

increases with decreasing size and discrete energy levels arise 

at the bandgap edges [5]. © CC BY 4.0. Open access. 2016 

Springer Nature Switzerland AG. 

 

 

2. Semiconductor quantum dots and nanocrystals 

Semiconductor clusters such as QDs or NCs are 

fragments of crystals consisting of hundreds to many 

thousands of atoms with the bulk bonding geometry and 

with surface states eliminated by enclosure in a material 

that has a larger bandgap due to quantum confinement 

effect. Their optical and electrical properties are strongly 

size-dependent [1,4].  

QDs are mostly colloidal 0D NCs, which are 

solution-processed and of rather ideal spherical shape 

with sizes below 20 nm. They have a size-tunable 

bandgap of very broad range, resulting in the emission 

variation in a very wide range (Fig. 2) [8,9]. Colloidal 

QDs can be synthesized from different compounds, such 

as II–VI (CdS, CdSe), III–V (InAs, InP, AlN, GaN), IV–

VI (PbS, PbSe) and III–V (CuInS2, CuInSe2), transitional 

metal chalcogenides, metal halide perovskites, etc. Their 

application field covers from laser diodes, displays, 

photodetectors, and cameras to solar cells and energy 

storage devices [10-12]. Yet, depending on their 

preparation method, the size and shape can be far from 

ideal ones and such structures are mostly classified as 

NCs or NPs. 

 

Fig. 2. Colloidal QD absorption/emission range variability over 

the whole visible region [10]. © CC BY 4.0. Open access. 

2014 Springer Nature Switzerland AG. 

 

 

The SPQEO journal focuses on this type of 0D 

nanomaterials, thus, some reports should be mentioned. 

Most recent articles are devoted to II–VI Cd-based QDs and 

NCs with chemical formulas of CdS [13], CdCuS [14,15], 

CdZnS [16], and CdTe [17]. The article on small-size QDs 

(about 5 nm) and optically detected magnetic resonance 

study of relaxation/emission processes in the NC-polymer 

composite may be highlighted [13]. Moreover, the impact of 

semiconductor QDs bandgap and their dispersion on 

reabsorption and the loss of luminescent quanta in 

luminescent solar concentrators is studied theoretically in 

[18,19] using CdS, CdSe, CdTe, InP, InAs and PbSe QDs as 

an example. 

A few reports describe properties of metal oxide 

NPs such as ZnO [20,21], AgO [22], TiO2 [23], BaTiO3 

[24] and SnO2 [25]. Several articles report green 

synthesis of metal oxide NPs using plant extracts and 

their characterizations [20-23]. The authors of Ref. [26] 

observed IR light absorption oscillations in 2D 

macroporous Si with CdTe, ZnO and CdS surface NCs 

and proposed a high-coherent optical quantum computer 

based on ZnO NCs on macroporous Si surface. SiO2 

nanocomposite films are also fabricated and 

characterized [27-29]. Nanostructured SiC as a promising 

material for the cold electron emitters is studied [30]. The 

authors of Ref. [30] proposed a novel cold electron 

emitter based on self-assembled SiC nanotips grown on a 

Si substrate by a simple and cost-effective manufacturing 

process based on a standard microelectronics-grade Si 

wafers with no ultra-high vacuum required and no 

complicated chemical deposition processes or toxic 

chemicals involved. There is also a comprehensive 

review on luminescent properties of the structures with 

embedded Si nanoclusters focusing on the influence of 

technology, doping and annealing [31].  

Nanoislands, known as solid-state QDs, are highly 

investigated during last three decades [32-35]. Binary or 

ternary III-V compounds, such as InAs, InGaAs, GaAs, 

InP, GaN, AlGaN, AlN, and others are used to grow 

these nanostructures. They are successively applied in 

laser diodes, displays, photodetectors, cameras and solar 
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cells [36,37]. The reports on In(Ga)As/GaAs QDs 

published in SPQEO are focused on the defects created 

in such nanostructures due to the mismatch between the 

QD material and embedding layers [38,39]. 

 

3. One-dimensional nanowires 

Semiconductor 1D NWs are a new class of semiconductors 
with typical cross-sectional dimensions that can be tuned 

from 1–100 nm and lengths spanning from hundreds of 
nanometers to millimeters [40]. They can be made from Si, 
Ge, SiGe, CdS, ZnO, GaN, InAs, perovskites, transitional 
metal chalcogenides, etc. NWs have peculiar optical 

properties and specific conductivity and photoconductivity 
that can be used for nanoelectrodes, anisotropic 
photodetectors, photocatalysts and solar cells [41-44]. 

In SPQEO, the electrophysical properties of Si NW 

arrays synthesized using the metal-assisted chemical 

etching and suitable for application in chemical sensors 

and solar cells are studied in [46]. Studies of optimal 

regimes of growing Si self-assembled NWs by means of 

metal-enhanced CVD technology as well as mechanical 

strains inevitably arising in such structures are reported 

[47,48]. A few other articles report on optical properties 

of NWs of CdS synthesized by vapor–liquid–solid 

growing were investigated as the function from such 

technological parameter as overpressure of sulfur vapor 

at  the synthesis process  or sulfurization post-processing 

[45,49,50]. They have characteristic structure of NRs and 

luminescence in the visible range (Fig. 3). 
 

   
 

     

Fig. 3. Scanning electron microscopy images of CdS nanowires 

and their luminescence spectra [45]. © CC BY 4.0. Open 

access. 2023 Publisher PH “Akademperiodyka” of the NAS of 

Ukraine. 

4. Two-dimensional nanostructures and quantum 

wells 
 

Nanometer-thick semiconductor lattices with a high 
crystallinity, known as QWs, are one of the first created 
nanomaterials. They are mostly known by using in first 

laser diodes [51,52]. In SPQEO, current and 
electroluminescence intensity oscillations under bipolar 
lateral electric transport in double-GaAs/InGaAs/GaAs 

QWs [53] as well as the emission spectra of electron 
beam irradiated InGaN/GaN white LEDs with QWs [54] 
are measured. Moreover, narrow-band controllable 
sources of IR emission based on multilayer magneto-

optical photonic structures containing a III-V 
semiconductor layer are simulated in Ref. [55]. Electrical 
properties inherent to ZnO nanofilms prepared using the 

sol-gel method with potential applications in the fields of 
electronics, photoelectronics and sensor technologies are 
studied as well [56].  

2D nanostructures of graphene or layered 

semiconductors are currently ones of the most studied 
matters. There are not many articles devoted to them in 
SPQEO. Up to now, an increase in the efficiency of 

copper indium gallium selenide (CIGS) solar cells due to 
the reduced graphene oxide field layer of the back 
surface is reported in Ref. [57]. Moreover, a 

comprehensive review article on 2D MoS2 for photonic 
applications was published [58]. 

 

Conclusions 
 

The SPQEO journal covers main trends in the physics 

and technology of semiconductor nanomaterials used in 

modern nanoelectronics, optoelectronics, photonics, 

photovoltaics and sensorics. These nanostructures 

include QWs, QDs (or NCs and NPs) based on Si, SiC, 

II-VI, III-V and IV-VI semiconductor compounds and 

their solid solutions as well as metal oxides. The basic 

properties of nanostructures of different dimensions, 

preparation of semiconductor nanostructures and some of 

their electrical and optical properties are discussed. 
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О.Є. Бєляєв,  З.В. Максименко,  О.Г. Голенков, В.М. Кравченко, П.С. Смертенко 
 

Анотація.  Напівпровідникові матеріали є життєво важливими для сучасних технологій для випромінювачів 

світла, датчиків і приводів, обчислювальних пристроїв і пристроїв пам’яті, а також для збору та зберігання 

енергії. У той же час наноструктури на основі напівпровідників сприяють швидкому розвитку технологій і 

створенню матеріалів з принципово новими властивостями завдяки ефектам квантового розміру. Журнал SPQEO 

приділяє увагу сучасному розвитку такого напряму, як фізика наночастинок і наноструктур.  Протягом останніх 

років журнал публікував статті про напівпровідникові нанокристали, квантові точки, тонкі ґратки, включаючи їх 

зростання, характеристику, дослідження фізичних властивостей і теоретичний опис. 
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