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Abstract.

In this paper, we investigate dispersive optical solitons incorporating

multiplicative white noise. Utilizing the F-expansion procedure, we derive various soliton
solutions, including dark soliton solutions, singular soliton solutions, bright soliton
solutions, straddled singular-singular soliton solutions, complexiton solutions, and
straddled dark-bright soliton solutions. Moreover, we discuss the parametric restrictions
necessary for the existence of these soliton solutions, providing a comprehensive analysis
of the conditions under which these solutions are valid. Our findings contribute to the
understanding of the dynamics of perturbed nonlinear wave equations in the presence of

stochastic influences.
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1. Introduction

Study of nonlinear wave equations has garnered
significant attention due to their wide range of applica-
tions in various fields such as fluid dynamics, plasma
physics, optical fibers, and quantum mechanics. Among
these, nonlinear Schrodinger equation is particularly
notable for its ability to describe complex wave
phenomena, including soliton dynamics [1-10]. Solitons
are stable, localized wave packets that maintain their
shape while propagating at constant velocity, making
them crucial in understanding nonlinear wave behavior.
In real-world scenarios, wave propagation is often
influenced by stochastic perturbations. These random
influences can significantly alter the dynamics described
by deterministic models. Incorporating such effects into
the modeling of nonlinear wave equations is essential for
accurately capturing the behavior of physical systems.
The perturbed cubic-quartic nonlinear Schrédinger
equation, which includes multiplicative white noise,

represents a more realistic model by accounting for these
stochastic effects. To analyze the solutions of this
perturbed equation, various mathematical methods can be
employed. One effective approach is the F-expansion
procedure, which facilitates derivation of exact soliton
solutions. This method has been successfully applied to
various nonlinear equations, yielding a spectrum of
soliton solutions that enhance our understanding of the
underlying dynamics. In this paper, we apply the F-
expansion procedure to the perturbed cubic-quartic
nonlinear Schrédinger equation with multiplicative white
noise. Our goal is to obtain different types of soliton
solutions, including dark soliton solutions, singular
soliton solutions, bright soliton solutions, straddled
singular-singular ~ soliton  solutions,  complexiton
solutions, and straddled dark-bright soliton solutions.
Moreover, we explore the parametric restrictions
necessary for these solutions to exist, providing a
comprehensive analysis of the conditions that govern
soliton formation and stability.
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The structure of the paper is as follows: after the
introduction, we outline the mathematical formulation of
the perturbed cubic-quartic nonlinear Schrodinger
equation. We then describe the F-expansion procedure
and apply it to derive various soliton solutions.
Following this, we discuss the parametric restrictions for
these solutions. Finally, we conclude with a summary of
our findings and potential directions for future research.
This study aims to contribute to the field of nonlinear
wave equations by offering new insights into the soliton
solutions of the perturbed cubic-quartic nonlinear
Schrodinger equation in the presence of stochastic
influences. Our results not only enhance the theoretical
understanding of soliton dynamics but also have practical
implications for systems where noise plays a crucial role.

1.1. Governing model

The dimensionless structure of the model equation that
describes dispersive optical solitons incorporating
multiplicative white noise can be expressed as follows:

iqt + A1qxx + iaquxx + A3Qxxxx + (bll‘ﬂz + bz|Q|4)CI +
aw(e) .
= ila(lq)*@)x + Blal?qx + ¥(q1)ql. (D)

T

The equation involves a complex-valued function
q(x,t), where x and t represent the spatial and temporal
coordinates, respectively. The imaginary unit is given
by i. The equation comprises several terms, including the
evolution term, which governs the temporal dynamics of
the wave profile. The other terms are related to
dispersion phenomena, such as chromatic dispersion,
cubic dispersion and quartic dispersion, represented by
the coefficients aj, a,, and as, respectively. Additionally,
the equation includes coefficients representing self-phase
modulation, denoted by b; and b,. There are also
perturbation terms represented by the parameters a, f,
and y, which account for the effects of external factors on
wave propagation. Here, o signifies the coefficient of
noise strength and W(t) corresponds to the standard

Wiener process, so that dVZ—EO expresses the white noise.

2. F-expansion procedure

We take into account the model equation:

G(9,9x 96 Gxt> Grexr---) = 0, (2
and the constraints
q(x,t) = U(S), § = pulx—vt), 3

where & and u take on the roles of the wave variable and
wave width, respectively, and v signifies the wave
velocity. It follows that Eq. (2) becomes

P(U,—uvU',uU’, u?U0",...) = 0. 4

Step—1: In the presence of (4), the simplified model
confirms the solution structure

U(§) = XiLo BiF'(9),

applying the ancillary equation

®)

F'(&) = \/PF*(§) + QF*(&) +R. (6)

Thus, the soliton wave profiles derived from (6) are
presented as follows:

F(&) = sn(¢) = tanh(§), P =m?
Q=—-(14m?, R=1, m- 17,

F(&) =ns(§) = coth(§), P=1,
Q=—-(14+m?, R=m? m-1,

F(&) = cen(§) = sech (§), P =-m?
Q=2m?-1, R=1-m? m-1",

F(§) =ds(§) = csch (), P=1,

Q0=2m?-1, R=-m*(1-m?),m-1",

F(&) = ns(§) £ ds(§) = coth(§) + csch (§),

m2—2

_1 — _m 1_
P=gp 0= R=7» m>
F(&) = sn(§) +icn(é) = tanh(§) + i sech (&),
P_m2 _m? =2 R_m2 -
I A T
_sn(§)  tanh(§)
F(E)_lidn(f)_lisech’
mZ m2_2 2 B
P=g =5 REpmo 1
O

where the Jacobi elliptic functions (JEFs) sn(&), ns(&),
cn(é), ds(¢) and dn(é) are associated with a modulus,
0 <m < 1. Furthermore, the constants B; (with i ranging
from 0 to N) are a product of the balancing approach
outlined in (4).

Step—2: Combining (5) and (6) within (4), we estab-
lish a system of equations that leads to determination of
the unknown constants in (4) through (7).

3. Optical solitons

In this section, the integration method is employed to
acquire optical solitons in conjunction with the model.
The optical soliton is characterized by the assumed
profile:

q(x, t) = U(§)e™". (8)

Here, U (&) is the soliton amplitude component, while the
wave variable is given by

©)

where u is the wave width and v is the velocity. Also, the
soliton phase component is given by

& =x—vt,

9(x,t) = —kx + wt + oW (t) — 0%t + 6,. (10)

Here, x denotes the soliton frequency, w denotes the
wave number, and 6, is the phase constant, respectively.
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Substituting (2) into (1) and separating the result into real
and imaginary components, one obtains:

asU™ + (a; + 3k a; — 6 azk)U" + (62 —w —
k2a; + azk* —k3a)U+ (b —ak — B K)U3 +
b2U5 = 0, (11)

and

(a; —4azx)U" + (4 azx® — 2ka; — v — 3k2a,)U —
-y + B +3a)U%U = 0. (12)

From (12), we get the following constraint relations:

a, = 4 azk,
and
B3a+pB+2y=0. (13)

After implementing these changes, the soliton
velocity derived from (12) can be written as follows:

v = —2ka; — 8x3as, (14)
and the governing equation (11) is transformed to

asU®™ + (a; + 6 azk®)U" + (62 — w — k?a, —
3k*az)U+ (by —ak— B K)U3 + byUS =0. (15)

ak+fKk—Db;

b2:

12 Px%a; — 20 PQas; — 6 Pk a, — 2 Pa
By =0, B'1=i\/— 3 Qaz 2 1

The balance of the termsU ° and U  in (15) results
in N = 1. In this integration process, the solution structure
(5) is presented in a simplified form as
U(§) = By + B1F(§). (16)

Combination of (16) with (6) into (15) leaves us
with the following equations:

5 ByB,*b, = 0,

0%By — w By — ak By> — Bk By* + By>b; +
B,°b, + k*Bya; — k*Boa, — k*Bya; = 0,

12 PRB;a; — 6 Qx?B,a; + 3 Qk Bya, —

3 axBy’B, —3 Bk By’B, + Q*B,a; +
QB,a, + 3 By*B,b, + 5 By*B,b, + k*B,a; —
k3B,a, — k*Bya; + 0?B, —w B; =0,

B,°b, + 24 P?Ba; = 0,

(17)
10 By®B,°b, — 3 a k ByB,* —
3Bk ByB,> + 3 ByB,*b, = 0,

10 By®B;*b, — 12 Pk?Bya; — a k B;> — Bk B> +
20 PQB,a; + 6 Px Bya, + B,*b, + 2 PB,a, = 0.

Upon solving these equations, one uncovers the

outcomes:

)

w = k*a; — 6 Qr?a; — k3a, + 12 PRas + Q%a3 + 3 Qk a, — k%a; + Qa, + a2, (18)

6as(a’k?> +2afk?+ p?k? —2ak by —2 B Kby +b?)

Result 1:
Referring to (7), Eq. (18) evolves into

12 k2?a; —6Kka,—2a,+40a,
By=0, B, =+ |-
ak+pfKk—b

36 k*a? —120 Qx%a3 — 36 k3ayas + 100 Q%a3 + 60 Qk azaz — 12 k2a a; + 9 k%aZ + 20 Qa,az + 6 k aa, + a?

w=k*a;—Kk3a, —kla; +12K%a; — 6K a, + 02 —2a, + 16 as, (19)

6a;(a’k®+2afr’+p?k>—2akb, —2 B kb +b?)

b2:

36 k*aZ — 36 K3aya; — 12 K2a,a; + 9 k2a2 + 240 k2a2 + 6 k a,a, — 120 K a,a; + a2 — 40 a,a; + 400 a2

In conclusion, the dark and singular soliton solutions are
formulated as

_ 12 k2a3-6 k ay—2 a;+40 az
q(x,t) = iJ pr— tanh(x +
(2ka, + 8K3a3)t)ei(—rcx+wt+UW(t)—aZt+90)’ (20)

and

a k+f k—by
(21((11 + 8K3a3)t)ei(—xx+wt+aw(t)—a2t+90)_ (21)

24— -
q(x,t) — i\[_IZK az—6kKda; 2a1+40a3coth(x+
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The wave forms in Egs. (20) and (21) are depicted by
(ak+pBrx—b)(12K%*a;—6Ka,—2a; +40a3) <0
Result 2:

Utilizing (7), Eg. (18) transforms into

12 k2az—-6Ka,—2a;-20a;
a K+ k—bq

)

p
BO=0' Bl=i\/

o = k*a; — k3a, —k?a; —6K?a3; +3Kka, + 0% +a; +as,

6as(a?k?+2 a B k?+B%Kk%>—2 ak by—2 f Kk by+b,?)

b2:_

\

Thus, the solution for the bright soliton takes the form of

— 12x%az-61xa;~2a,-20 az 3 i(~Kkx+wt+oW (t)—a%t+6,)
qx, t) = iJ oy — sech(x + (2kxa, + 8x3az)t)e .

The wave form outlined in (24) is represented by
(ak+pBrx—b)(12K%*a;—6Ka,—2a; —20a;3) > 0.
Result 3:

Employing (7), Eq. (18) changes to

12 k2az—-6 K a,—2 a;—20 as
ak+p k—bq

)

a
BOZO, Blzi\/_

o = k*as — k3a, —k?a; —6K?a3 +3Kka, + 0% +a; +as,

6as(a?k?+2 a B k?+B%Kk>—2 a Kk by—2 f Kk by+b,?)

b2=

36 k*az2-36 K3a,a3—12 k2a;a3+9 k2a,2-120 k2a32+6 K A1a,+60 kK azaz+a,;2+20 a;as+100 az2’

\

Therefore, the solution for a singular soliton is

_ _12k?a3—-6ka;—2a;-20az 3 i(~Kx+ot+oW (t)—o2t+8y)
q(x,t) = i\/ e T—— csch(x + (2ka, + 8r3aj)t)e .

The wave form illustrated in (27) is given by

(ax+Brx—b)12K?a;—6Ka,—2a; —20a3) <O0.

Result 4:

According to (7), we can rewrite Eq. (18) as

6K2a3—3 K a,—a;+5 az
2ak+2 B k—-2bq

J

a
BO=O, Bl=i\/_

o = k*as —k3a, — k?a, + 3k%a; —3/2ka, + 0?> —1/2 a; + as,

6as(a?k?+2afr?+B%k?—2aKb,—2 kb, +b,?)
36K*as2—36x3a,a3—12K2a, a3 +9x2a,2+60x2az2+6Kka,a,—30kaas+a,2—10a,az+25a52 "

(b2 =
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36 k*az2-36 K3a,a3—-12 k2a,a3+9 k2a,%2-120 k2a32+6 K a1a,+60 kK azas+a;2+20 a;as+100 az2’

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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In this case, straddled singular—singular soliton solution is given by

coth(x + (2xa; + 8x3a3)t)

q(x, t) — i\[— 6 K2az—3 Kk az—a;+5as ei(—xx+wt+aw(t)—azt+90)_ (30)
2ak+2 f k-2 by
+csch(x + (2xa, + 8x3a3)t)
Furthermore, the complexiton solution is represented by
- tanh(x + (2ka; + 8x3a3)t)
q(x,t) = i\/_ 6Kk“az—3 Kk az—a;+5as el(-rx+ot+ow(t)-o?t+6,) (31)
2ak+2 B Kk—2by i
+isech(x + (2ka; + 8x3a3)t)
Finally, the solution for a straddled dark-bright soliton is
_ _ 6K%az—3 Kk a;—a;+5as  tanh(x+(2ka;+8xk3az)t) i(—Kex+ot+oW (£)—o2t+6
q(x' t) - i\[ 2ak+2 f k-2 by {1isech(x+(21ca1+8k3a3)t)} € ( 0)' (32)
The wave forms referenced in (30)—(32) can be provided by
(ak+pfrx—b)(6K?a3—3Ka,—a; +5a;3) <O0. (33)

4. Conclusions

In this study, we have successfully addressed dispersive
optical solitons incorporating multiplicative white noise.
Utilizing the F-expansion procedure, we have derived a
variety of soliton solutions, including dark soliton
solutions, singular soliton solutions, bright soliton
solutions, straddled singular-singular soliton solutions,
complexiton solutions, and straddled dark-bright soliton
solutions. These solutions provide significant insights
into the complex dynamics governed by the perturbed
nonlinear wave equation under stochastic influences. We
have also thoroughly discussed the parametric
restrictions necessary for the existence of these soliton
solutions. These constraints are crucial for the stability
and realization of different soliton types in practical
scenarios. Our analysis highlights the sensitivity of
soliton behavior to the parameters involved, offering a
deeper understanding of how perturbations and noise
impact soliton dynamics. The findings of this paper
contribute to the broader field of nonlinear wave
equations, particularly in contexts where stochastic
effects play a significant role. Future work could further
explore the numerical simulations of these soliton
solutions, investigate their stability under various
perturbations, and extend the methods to other types of
nonlinear equations with stochastic influences [1-10].
This study lays a groundwork for such explorations and
opens up new avenues for research in the interplay
between noise and nonlinear wave dynamics.
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Mucnepciiine onTH4YHe COJITOHHE 30ypeHHS 3 MYJIbTHILITIKATHBHUM OiTMM IIyMOM, II0 Ma€ mapadoiuHui

3aK0H caMoOMOyasANii ¢asu

Y. Yildirim & Biswas

AHoOTamiAg. VY mif cTarTi MU JOCTIPKYEMO JMCIICPCIHHI ONTHYHI COJITOHH, 0 MICTATh MYJIbTHILTIKATHBHUN OUTHIT
myM. BukopucroByroun npouenypy F-po3kiageHHs, MH OTPUMYEMO Pi3HI CONITOHHI PO3B’SI3KH, BKIIOYAFOUN TEMHI
COJIITOHHI PO3B’SI3KM, CHHTYJISAPHI COJITOHHI PO3B’S3KH, SICKPaBi COJIITOHHI PO3B’SI3KH, PO3CISIHI CHHTYJISIPHO-
CHHTYJISIPHI COJITOHHI PO3B’S3KH, KOMIICKCITOHHI pO3B’SI3KM Ta PO3CITHI TEMHO-SCKPaBi CONITOHHI po3B’s3ku. Kpim
TOr0, MU OOTOBOPIOEMO TMApaMETPHUYHI OOMEKCHHS, HCEOOXIJHI i ICHYBaHHS TaKUX COJIITOHHUX PO3B’s3KiB,
HAIal09¥ KOMIUIEKCHUH aHaJi3 YMOB, 3a AKHX IIi pO3B’I3KH € CIIpaBeUIMBUMH. Harri BHCHOBKH CITPHUSIOTH PO3YMIHHIO
JIMHAMIKH 30ypEeHHX HEJIIHIMHUX XBUJILOBUX PIBHSHB 3a HASBHOCTI CTOXaCTUYHHX BILJIHMBIB.

Kuarouosi ciioBa: comiironu, Oumuii urym, F-po3kinageHHs.
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