Semiconductor Physics, Quantum Electronics and Optoelectronics, 2 (1) P. 102-110 (1999).


References

1. E. Fossum, and B. Pain, Infrared readout electronics for space science sensors: State of the art and future directions //Proc. SPIE,2020, pp.262-285 (1994).
https://doi.org/10.1117/12.160549
2. Ph. Tribolet, Ph. Hirel, A. Lussereau, and M. Vuillermet, Mainresults of SOFRADIR IRFPAs including IRCCD and IRCMOS detectors // Proceed. SPIE, 2552,pp.369-380, (1996).
3. J. T. Longo, D. T. Cheung, A. M. Andrews, C.C. Wang, and J.M. Tracy, ìInfrared focal planes in intrinsic semiconductor // IEEE Trans. Electron Devices, ED-25, p.213 (1978).
https://doi.org/10.1109/T-ED.1978.19062
4. J. L. Vampola, ìReadout Electronics for Infrared Sensors,î in Electro-Optical Components, edited by W. D. Rogatto // SPIE Opt. Eng. Press, 1993, Ch.5.
5. L. J. Kozlowski, and W. F. Kosonocky, ìInfrared Detector Arrays,î in Handbook of Optics, edited by M. Boss, W. Van Stryland, D. R. Williams, and W. L. Wolfe, McGraw-Hill, New York,1995.
6. N. D. Jovilet, and L. D. Holoien, Failure and yield analysis techniques for readout devicea tested in a high throughput automated wafer probing enviroment // Proc. SPIE, 1157, pp.220-229 (1989).
https://doi.org/10.1117/12.978598
7. K. C. Chow, J. P. Rode, D. H. Seib, J. D. Blackwell, Hybrid focal plane arrays // IEEE Trans. Electron Devices, ED-29, pp.3-13(1982).
https://doi.org/10.1109/T-ED.1982.20651
8. L. J. Kozlowski, W. V. Mclevige, S. A. Cabelli, A. H. B. Vanderwyck, D. E. Copper, E. R. Blazejewski, K. Vural, and W. Tennant, Attainment of high sensitivity at elevated operating temperatures with staring hybrid HgCdTe on sapphire focal plane arrays // Optical Engineering, 33, pp.704-715 (1994).
https://doi.org/10.1117/12.163405
9. P. Nicolas, Ph. Pantigny, J. Cluzel, M. Vilain, J. L. Ouvrier Buffet, J. J. Yon, An in pixel self-calibrating IR FPA // Proc. SPIE,2269, pp.406-416 (1994).
https://doi.org/10.1117/12.188657
10. M. Kimata, M. Denda, N. Yutani, N. Tsubouchi, and S. Uematsu, Low-temperature characteristics of buried channel charge coupled devices // Jap. J. Appl. Phys., 22, pp.975-980 (1983).
https://doi.org/10.1143/JJAP.22.975
11. E. K. Bandhart, J. P. Lavine, E. A. Trabka, E. T. Nelson, and B.†C.†Burkey, A model for charge transfer in buried channel charge coupled devices at low temperatures // IEEE Trans. Electron Devices, 38, pp.1162-1174 (1991).
https://doi.org/10.1109/16.78394
12. R. H. Walden, R. H. Krambeck, R. J. Strain, J. McKenna, and G. E. Smith, The buried channel charge coupled device // Bell Syst.Tech. J., 51, pp.1635-1640 (1972).
https://doi.org/10.1002/j.1538-7305.1972.tb02674.x
13. N. Bluzer, and R. Stehlik, Buffered direct injection of photocurrents into charge coupled devices // IEEE Trans. Electron Dev.,25, pp.160-166 (1978).
https://doi.org/10.1109/T-ED.1978.19054
14. R. R. Troutman, Subthreshold design considerations for IGFETís // IEEE J. Sol. St. Circuits, SC-9, pp.55-58 (1974).
https://doi.org/10.1109/JSSC.1974.1050462
15. B. Zetterland, and A. J. Steckl, ́Low-temperature operation of silicon surface-channel charge coupled devices,ª IEEE Trans. Electr. Dev., ED-34, 39-50 (1987).
https://doi.org/10.1109/T-ED.1987.22883
16. D. J. Burt, Readout techniques for focal plane arrays // Proc. SPIE,865, pp.2-16 (1987).
17. R. S. Muller, Th. I. Kamins, Device Electronics for Integrated Circuits, John Wiley & Sons, New York-Chichester-Brisbane-Toronto-Singapore, (1986).