Semiconductor Physics, Quantum Electronics and Optoelectronics, 3 (2) P. 126-137 (2000).


References

1. Schaff W. J., Tasker P. J., Foisy M. C., and Eastman L. F.Strained layer superlattices: Materials science and technology // Semiconductors and Semimetals 33,Ed. Pearsall T.,pp. 73-138, New York: Academic Press (1991).
https://doi.org/10.1016/S0080-8784(08)62652-6
2. Henderson T., Aksun M. I., Peng C. K., Morcoç H., Chao P.C., Smith P. M., Duh K. H. G., and Lester L. F. Microwave performance of a quarter-micrometer gate low-noise pseudomorphic InGaAs/AlGaAs modulation-doped field effect transistor // IEEE Electron. Device Lett. 7(12), pp. 649-651 (1986).
https://doi.org/10.1109/EDL.1986.26507
3. Chen W., Fritze M., Nurmikko A. V., Ackley D., Colvard C., and Lee H. Interaction of magnetoexcitons and two-dimensional electron gas in the quantum Hall regime // Phys.Rev. Lett. 64(20), pp. 2434-2437 (1990).
https://doi.org/10.1103/PhysRevLett.64.2434
4. Delalande C., Bastard G., Orgonasi J., Brum J. A., Liu H.W., Voos M., Weimann G., and Schlapp W. Many-body effects in a modulation-doped semiconductor quantum well // Phys. Rev. Lett. 59(23), pp. 2690-2692 (1987).
https://doi.org/10.1103/PhysRevLett.59.2690
5. Skolnick M. S., Rorison J. M., Nash K. J., Mowbray D. J.,Tapster P. R., Bass S. J., and A. D. Pitt Observation of a many-body edge singularity in quantum-well luminescence spectra // Phys.Rev. Lett. 58(20), pp. 2130-2133 (1987).
https://doi.org/10.1103/PhysRevLett.58.2130
6. Chang Y. C. and Sanders G. D. Band-mixing effect on the emission spectrum of modulation-doped semiconductor quantum wells // Phys. Rev. B. 32(8), pp. 5521-5524 (1985).
https://doi.org/10.1103/PhysRevB.32.5521
7. Heiman D., Goldberg B. B., Pinczuk A., Tu C. W., Gossard A. C., and English J. H. Optical anomalies of the two-dimensional electron gas in the extreme magnetic quantum limit // Phys. Rev. Lett. 61(5), pp. 605-608 (1988).
https://doi.org/10.1103/PhysRevLett.61.605
8. Tarasov G. G., Müller U., Mazur Yu. I., Kissel H., Zhuchenko Z. Ya., Walther C., and Masselink W. T. Direct investigation of localized hole states in pseudomorphic modulation-doped AlxGa1-xAs/InyGa1-yAs/GaAs heterostructures by optical detection of quantum oscillations // Phys. Rev. B. 58(8), pp.4733-4739 (1998).
https://doi.org/10.1103/PhysRevB.58.4733
9. Fisher T. A., Simmonds P. E., Skolnick M. S., Martin A. D., and Smith R. S. Fermi-energy edge singularity and excitonic enhancement associated with the second subband in asymmetric modulation-doped quantum wells // Phys. Rev. B.48(19), pp. 14253-14263 (1993).
https://doi.org/10.1103/PhysRevB.48.14253
10. Chen W., Fritze M., Walecki W., and Nurmikko A. V.Excitonic enhancement of the Fermi-edge singularity in a dense two-dimensional electron gas // Phys. Rev. B. 45(15),pp. 8464-8477 (1992).
https://doi.org/10.1103/PhysRevB.45.8464
11. Xu S. J., Chua S. J., Tang X. H., and Zhang X. H. Strong interaction of Fermi-edge singularity and exciton related to N= 2 subband in a modulation-doped AlxGa1-xAs/InyGa1-yAs/GaAs quantum well // Phys. Rev. B. 54(24), pp. 17701-17704 (1996).
https://doi.org/10.1103/PhysRevB.54.17701
12. Buyanova I. A., Lundström T., Buyanov A. V., Chen W. M.,Bi W. G., and Tu C. W. Strong effects of carrier concentration on the Fermi-edge singularity in modulation-doped InP/InxGa1-xAs heterostructures // Phys. Rev. B. 55(11), pp. 7052-7058 (1997).
https://doi.org/10.1103/PhysRevB.55.7052
13. Hawrylak P. Optical hole in a two-dimensional electron gas // Phys. Rev. B. 42(14), pp. 8986-8990 (1990).
https://doi.org/10.1103/PhysRevB.42.8986
14. Mueller J. F., Ruckenstein A., and Schmitt-Rink S. Interference of the Fermi edge singularity with an excitonic resonance in doped semiconductors // Mod. Phys. Lett. B. 5(2),pp. 135-138 (1991).
https://doi.org/10.1142/S0217984991000174
15. Livescu G., Miller D. A. B., Chemla D. S., Ramaswamy M.,Chang T. Y., Sauer N., Gossard A. C., and English J. H. Free carrier and many-body efffects in absorption spectra of modulation-doped quantum wells // IEEE J. Quantum Electron.24(8), pp. 1677-1689 (1988).
https://doi.org/10.1109/3.7098
16. Gumbs G., Huang D., and Fessatidis V. Many-body effects on temperature dependence of the interband absorption in quantum wells // J. Appl. Phys.75(12), pp. 7942-7948 (1994).
https://doi.org/10.1063/1.356582
17. Kissel H., Müller U., Walther C., Masselink W. T., Mazur Yu. I., Tarasov G. G., Zhuchenko Z. Ya. Peculiarities of photoluminescence in pseudomorphic modulation-doped Al0.2Ga0.8As/In0.1Ga0.9As/GaAs quantum wells // Phys. Rev.B. 58(8), pp. 4754-4760 (1998).
https://doi.org/10.1103/PhysRevB.58.4754
18. Guzzi M. and Steahly J. L. Physics of DX centers in III-V ternary compounds / Ed. Bourgoin J. C., Aedermannsdorf:Trans Tech. (1989).
19. Goetz K.-H., Bimberg D., Jürgensen H., Selders J.,Solomonov A. V., Glinskii G. F., and Razeghy M. Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44<x<0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition // J. Appl. Phys. 54(8), pp. 4543-4552 (1983).
https://doi.org/10.1063/1.332655
20. Joyce M. J., Johnson M. J., Gal M., and Usher B. F. Concentration-dependent band offset in InxGa1-xAs/GaAs strained quantum wells // Phys. Rev. B. 38(15), pp. 10978-10980 (1988).
https://doi.org/10.1103/PhysRevB.38.10978
21. Hedin L. and Lundqvist B. I. Explicit local exchange-correlation potentials // J. Phys. C : Solid St. Phys. 4, pp. 2064-2083 (1971).
https://doi.org/10.1088/0022-3719/4/14/022
22. Lyo S. K. and Jones E. D. Photoluminescence line shape in degenerate semiconductor quantum wells // Phys. Rev. B.38(6), pp. 4113-4119 (1988).
https://doi.org/10.1103/PhysRevB.38.4113
23. Gilpérez J. M., Sánchez-Rojas J. L., Muñoz E., Calleja E.,David J. P. R., Reddy M., Hill G., Sánchez-Dehesa J. Room-and low-temperature assessment of pseudomorphic AlGaAs/InGaAs/GaAs high-electron-mobility transistor structures by photoluminescence spectroscopy // J. Appl. Phys. 76(10), pp5931-5944 (1994).
https://doi.org/10.1063/1.358416
24. Colvard C., Nouri N., Lee H., and Ackley D. Optical investigations of the high-density electron gas in pseudomorphic InxGa1-xAs quantum-well structures // Phys. Rev. B. 39(11),pp. 8033-8036 (1989).
https://doi.org/10.1103/PhysRevB.39.8033
25. Fano U. Effects of configuration interaction on intensities and phase shifts // Phys. Rev. 124(6), pp. 1866-1878 (1961).
https://doi.org/10.1103/PhysRev.124.1866
26. Glutsch S., Siegner U., Mycek M.-A., and Chemla D. S.Fano resonances due to coupled magnetoexciton and continuum states in bulk semiconductors // Phys. Rev. B. 50(23),pp. - 17009-17017 (1994).
https://doi.org/10.1103/PhysRevB.50.17009
27. Oberli D. Y., Böhm G., and Weimann G. Fano resonances in the excitation spectra of semiconductor quantum wells // Phys.Rev. B. 49(8), pp. 5757-5760 (1994).
https://doi.org/10.1103/PhysRevB.49.5757
28. Cohen G., Shtrikman H., and Bar-Joseph I. Optical spectroscopy of Fano interference in a GaAs/AlxGa1-xAs superlattice in a magnetic field // Phys. Rev. B. 52(16), pp.11642-11645 (1995).
https://doi.org/10.1103/PhysRevB.52.R11642
29. Brugger H., Müssig H., Wölk C., Kern K., and Heitmann D.Optical determination of carrier density in pseudomorphic AlGaAs/InGaAs/GaAs hetero-field- effect transistor structures by photoluminescence // Appl. Phys. Lett. 59(21), pp.2739-2741 (1991).
https://doi.org/10.1063/1.105904
30. Dodabalapur A., Kesan V. P., Hinson D. R., Neikirk D. P.,and Streetman B. G. Photoluminescence studies of pseudomorphic modulation-doped AlGaAs/InGaAs/GaAs quantum wells // Appl. Phys. Lett. 54(17), pp. 1675-1677(1989).
https://doi.org/10.1063/1.101301
31. Brierley S. K., Hoke W. E., Lyman P. S., and Hendriks H. T.Photoluminescence characterization of pseudomorphic modulation-doped quantum wells at high carrier sheet densities // Appl. Phys. Lett. 59(25), pp. 3306-3308 (1991).
https://doi.org/10.1063/1.105714
32. Brierley S. K. Quantitative characterization of modulation-doped strained quantum wells through line-shape analysis of room-temperature photoluminescence spectra // J. Appl.Phys. 74(4), pp. 2760-2767 (1993).
https://doi.org/10.1063/1.355322
33. Kittel Ch. Quantum theory of solids. - M.: Nauka, 1967.- 492p. (in Russian)
34. Butov L. V., Kulakovskii V. D., Andersson T. G., and Chen Z. G. Localization effects, energy relaxation, and electron and hole dispersion in selectively doped n-type AlyGa1-yAs/InxGa1-xAs/GaAs quantum wells // Phys. Rev. B. 42(15), pp.9472-9479 (1990).
https://doi.org/10.1103/PhysRevB.42.9472
35. Uenoyama T. and Sham L. J. Many-body theory of magneto-optical spectra in doped quantum wells // Phys. Rev. B.39(15), pp. 11044-11049 (1989).
https://doi.org/10.1103/PhysRevB.39.11044
36. Kulik L. V., Petinova A. V., Kulakovskii V. D., Andersson T.G., Wang S.-M., and Lomsadze A. V. Interaction of above-Fermi-edge magnetoexciton states from different subbands in dense two-dimensional electron magnetoplasma // Phys.Rev. B. 51(24), pp. 17654-17659 (1995).
https://doi.org/10.1103/PhysRevB.51.17654
37. Ando T., Fowler A., Stern F., Electron properties of two-dimensional systems. - M.: Mir, 1985.- 416 p. (in Russian)
38. Skolnick M. S., Mowbray D. J., Whittaker D. M., and Smith R. S. Longitudinal-optical phonon and shake-up excitationsin the recombination spectra of semiconductor quantum wells // Phys. Rev. B. 47(11), pp. 6823-6826 (1993).
https://doi.org/10.1103/PhysRevB.47.6823
39. Nash K. J., Skolnick M. S., Claxton P. A., and Roberts J. S.Phonon sideband of photoluminescence as a probe of exciton states in a quantum well // Phys. Rev.B. 39(8), pp. 5558-5561(1989).
https://doi.org/10.1103/PhysRevB.39.5558
40. Skolnick M. S., Nash K. J., Tapster P. R., Mowbray D. J., Bass S. J., and Pitt A. D. Free-carrier screening of the interaction between excitons and longitudinal-optical phonons in InxGa1-xAs-InP quantum wells // Phys. Rev. B. 35(11), pp.5925-5928 (1987).
https://doi.org/10.1103/PhysRevB.35.5925
41. Lyo S. K., Jones E. D., and Klem J. F. Suppression of direct-transition phonon side bands in the magnetoluminescence from doped quantum wells // J. Phys.: Condens. Matter. 8(25),pp. L363-L369 (1996).
https://doi.org/10.1088/0953-8984/8/25/002
42. Jaschinski O., Vergöhl M., Schoenes J., Schlachetzki A., and Bönsch P. Observation of Landau levels and excitons at room temperature in In0.53Ga0.47As/InP quantum wells // Phys.Rev. B. 57(20), pp. 13086-13093 (1998).
https://doi.org/10.1103/PhysRevB.57.13086
43. Kukushkin I. V., von Klitzing K., Ploog K., and Timofeev V.B. Radiative recombination of two-dimensional electrons in acceptor d-doped GaAs-AlxGa1-xAs single heterojunctions // Phys. Rev. B. 40(11), pp. 7788-7792 (1989).
https://doi.org/10.1103/PhysRevB.40.7788
44. Yuan Y. R., Mohammed K., Pudensi M. A. A., and Merz J.L. Effects of carrier confinement in graded AlGaAs/GaAs heterojunctions // Appl. Phys. Lett. 45(7), pp. 739-741 (1984).
https://doi.org/10.1063/1.95381