Semiconductor Physics, Quantum Electronics and Optoelectronics, 7 (2) P. 190-194 (2004).


References

1. Wal R.L. Vander, Laser-induced incandescence: detection issues // Appl. Opt., 35(33), pp. 6548-6559 (1996).
https://doi.org/10.1364/AO.35.006548
2. Wal R.L. Vander and K.J. Weiland, Laser-induced incandescence: Development and characterization towards a measurement of soot-volume fraction // Appl.Phys.B, 59, pp. 445-452 (1994).
https://doi.org/10.1007/BF01081067
3. B. Axelsson, R. Collin and P.E. Bengtsson, Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration // Appl. Phys. B, 72(3), pp.367-372 (2001).
https://doi.org/10.1007/s003400100504
4. F. Cignoli, S. Benecchi and G. Zizak, Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames // Appl. Opt., 33(24), pp. 5778- 5782 (1994).
https://doi.org/10.1364/AO.33.005778
5. C. Allouis, F. Rosano, F. Beretta and A. DÂ’Alessio, A possible radiative model for micronic carbonaceous particle sizing based on time-resolved laser-induced incandescence // Meas. Sci. Technol., 13, pp. 401-410 (2002).
https://doi.org/10.1088/0957-0233/13/3/323
6. S. Zelensky, Laser-induced heat radiation in borate glass // J.Phys.: Condens.Matter, 10, pp. 7267-7272 (1998).
https://doi.org/10.1088/0953-8984/10/32/017
7. S. Zelensky, Laser-induced heat radiation of suspended particles: a method for temperature estimation // J. Opt. A: Pure Appl.Opt., 1, pp. 454-458 (1999).
https://doi.org/10.1088/1464-4258/1/4/306
8. S. Zelensky, Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence // J. Lumin., 104, pp. 27-33 (2003).
https://doi.org/10.1016/S0022-2313(02)00661-0
9. S.E. Zelensky, Self-induced attenuation of pulsed laser radiation in an aqueous suspension of submicron light-absorbing particles // J.Phys.: Condens. Matter, 15, pp. 6647-6657 (2003).
https://doi.org/10.1088/0953-8984/15/40/003
10. T. Kitamori, K. Yokose, M. Sakagami and T. Sawada, Detection and counting of ultrafine particles in ultrapure water using laser breakdown acoustic method // Jpn. J. Appl. Phys., 28, pp. 1195-1198 (1989).
https://doi.org/10.1143/JJAP.28.1195
11. C.M. Lawson and R.R. Michael, Nonlinear reflection at a dielectric-carbon suspension interface: Macroscopic theory and experiment // Appl.Phys.Lett., 64(16), pp. 2081-2083 (1994).
https://doi.org/10.1063/1.111985
12. C.M. Lawson, G.W. Euliss and R.R. Michael, Nanosecond laser-induced cavitation in carbon microparticle suspensions: Applications in nonlinear interface switching // Appl. Phys. Lett., 58(20), pp.2195-2197 (1991).
https://doi.org/10.1063/1.104924
13. K. Mansour, M.J. Soileau and E.W. Van Stryland, Nonlinear optical properties of carbon-black suspensions (ink) // J. Opt. Soc. Am., B9(7), pp. 1100-1109 (1992).
https://doi.org/10.1364/JOSAB.9.001100
14. K.M. Nashold, and D.P. Walter, Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions// J. Opt. Soc. Am., B12(7), pp. 1228-1237 (1995).
https://doi.org/10.1364/JOSAB.12.001228
15. Z. Jin, L. Huang, S.H. Goh, G. Xu and W. Ji, Size-dependent optical limiting behavior of multi-walled carbon nanotubes // Chem. Phys. Lett., 352, pp. 328-33 (2002).
https://doi.org/10.1016/S0009-2614(01)01468-3
16. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji and K.L. Tan, Electronic structure and optical limiting behavior of carbon nanotubes // Phys.Rev.Lett., 82(12), pp. 2548-2551 (1999).
https://doi.org/10.1103/PhysRevLett.82.2548
17. X. Sun, Y. Xiong, P. Chen, J. Lin, W. Ji, J.H. Lim, S.S. Yang, D.J. Hagan and E.W. Van Stryland, Investigation of an optical limiting mechanism in multiwalled carbon nanotubes // Appl. Opt., 39(12), pp. 1998-2001 (2000).
https://doi.org/10.1364/AO.39.001998
18. K.J. McEwan and P.A. Madden, Transient grating effects in absorbing colloidal suspensions // J.Chem.Phys., 97(11), pp. 8748-8759 (1992).
https://doi.org/10.1063/1.463393
19. H. Lowen and P.A. Madden, A microscopic mechanism for shock-wave generation in pulsed-laser-heated colloidal suspensions // J. Chem. Phys., 97(11), pp. 8760-8766 (1992).
https://doi.org/10.1063/1.463345
20. S.E. Zelensky, Non-uniformity of cross-beam laser power distribution as a source of errors in non-linear spectroscopy // Semicond. Phys., Quant. Electron. and Optoelectron., 6(3), pp. 378-381 (2003).
https://doi.org/10.15407/spqeo6.03.378