
 
Semiconductor Physics, Quantum Electronics & Optoelectronics. 2005. V. 8, N 2. P. 12-21. 

© 2005, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
   

12 

PACS: 73.21.Hb 

Parametrized equations for excitons in quantum wires  

A. El Haddad, J. Diouri  and A. Taqi 
Faculté des sciences , BP 2121, Tétouan, Morocco,  
E-mail: a_haddad01@yahoo.fr 
 

Abstract. A set of analytic equations for calculating the binding energies of excitons in 
T-shaped and squared quantum well wires are established within the effective mass 
approximation and the two-band model. The resolution is performed in the framework of 
the variational method. The projections of the relative movement in a lateral plane (2D 
exciton) and along the free movement direction (1D exciton) are examined as limiting 
cases. Binding energies and spatial extensions of the exciton as functions of the size of 
the wire for both the ground and the first excited states are calculated in the case of 
GaAs/GaAlAs heterostructures for T-shaped and squared geometries. The method is 
applied to calculate the effects on the excitons induced by the application of crossed 
electric and magnetic fields. Comparison between quantum wells, T-wires and squared 
wires is given. 
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1. Introduction 
 
Nowadays, the art of growing nanometre-sized quantum 
well wires (QWRs) with various cross sectional shapes 
is sufficiently advanced giving rise to new optical 
performances not achievable in 2D systems (for reviews, 
see [1-3] and references therein). The literature abounds 
on studying optical and electrical properties of a wide 
variety of such structures involving II-VI (CdMnS, 
CdMnSe) and III-V (GaAlAs, GaInAs / InP) compounds 
[3–5]. Over the past ten years, self-organized growth and 
cleaved edge overgrowth techniques have been 
developed to fabricate high-quality samples (V-groove 
and T-shaped wires) with enhanced interface uniformity 
[4-5]. It has been proved that for such structures, the 
confinement of the carriers in the edge region (at 10 nm-
scale regime) acts as a quasi-1D confinement enhancing 
then the binding energy of the excitons as well as the 
fundamental absorption intensity. A large number of 
theoretical and experimental works have been devoted to 
study excitonic effects in cylindrical, V-groove and T-
shaped wires [6-23]. In general, binding energies of 
excitons bE  in such systems were calculated using 
various theoretical approaches and numerical techniques. 
In [13], a first calculation of bE for GaAs rectangular 
quantum wire (RQWR) surrounded by an infinite 
confining potential and including phonon effects was 
performed with the use of variational solution to the 
effective mass approximation. Excitons in cylindrical 
quantum wires (CQWR) with infinite [24] and finite [11] 

barrier were studied and binding energies were 
calculated analytically for the first case and variationally 
for the second. In [25], a numerical solution of the Bloch 
equations describing the multisubband “1D” system was 
used to analyze optical properties of T- and V-like wires 
based on GaAlAs / GaAs structures. As a whole, it has 
been found that bE , as a function of the cross-section 
dimensions, follows trends similar to those habitually 
observed for 2D quantum wells but with top values 
larger than the ideal 2D limit. In general, the theoretical 
treatment of excitons in QWRs requires first to solve the 
two-dimensional Schrödinger equation for the confined 
states of the wire. To do this, except for cylindrical 
wires, which are completely solved analytically [24, 11], 
various numerical approaches were used to solve 
equations governing the eigenstates of electrons and 
holes mainly for realistic structures, i.e., T- and V-wires. 
Today, the tendency in investigating quantum wires is in 
general limited to the so-called realistic systems, i.e., T- 
and V-wires after some extensive studies of CQWRs. 
However, RQWRs are susceptible to give interesting 
features for both basic physics and applications. 
Effectively, in RQWRs, the confinement is expected to 
be stronger and, as a consequence, the excitons more 
enclosed: further localization and higher binding 
energies. This would yield more intensive and more 
squeezed excitonic spectra susceptible with new 
interesting applications. In addition, it was mentioned 
that these systems allow, when growing, enough 
precision in controlling shape and size even in the 
nanoscale region [26]. Furthermore, the theoretical 
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treatment of such structures enables, in a relatively 
simpler way, the derivation of quasi-analytical equations 
for excitonic states provided that electron and hole states 
are known. Actually, whereas the exciton properties for 
T- and V-like geometries are widely studied and 
compared each to other revealing no significant 
difference [25], it is still unclear whether the shape of 
cross-section influences the exciton properties when they 
are compared to the square-like geometry. Examination 
of the available data makes the response to this question 
difficult because of the wide variety of the physical 
parameters used, for the same material, in calculating 
and interpreting these properties.  

The aim of the present paper is to elucidate some 
aspects of these questions by focusing on the exciton 
properties in squared cross-section quantum wires 
(SQWRs). The corpus of the paper is a generalization of 
the method we have developed for quantum wells (QWs) 
with rectangular and parabolic confinements [27]. In 
contrast with QWs, the main difficulty for the analytic 
study of RQWRs arises from the coupling between x and 
y movements introduced by the discontinuity of the 
confining potential along (x–y)-directions making the 
factorization (with respect to x and y coordinates) of the 
single particle function not relevant.  A few methods 
have been suggested to solve electron and hole states for 
RQWR with finite potential barrier [9 and references 
therein]. Recently, M. Tsetseri et al. [28] have used the 
finite difference method to calculate the ground state of 
V and rectangular quantum wires. They found that the 
energy is strongly affected by the shape of the wire and 
showed that V- and T-wires may be approximated by 
rectangular wires with suitable sides ratio. In the 
particular case of SQWRs which approximate the 
symmetric T-wires, factorized wavefunctions with 
required boundary conditions at the interfaces may be 
used as solutions for the ground state.  

In order to find practical and relatively simplified 
equations for excitons in QWRs, we develop a method 
where advanced analytical steps are carried out. The 
method is performed in the framework of the envelope 
function formalism based on the effective mass 
approximation and two-band model including valence 
band anisotropy. The solution is found on the basis of 
the variational principle. One power of the method is 
that it can be applied to any potential profile, provided 
that the solution of the one particle problem is known. 
We have also extended the method to study the effects of 
applied electric and magnetic fields on excitons. The 
paper is organized as follows: in the following section 
we formulate the assumptions and the equations of the 
model. The expressions for the spatial extension and the 
binding energy of the exciton are then established. The 
2D and 1D limiting cases, as projections of the relative 
movement in the lateral plane and along the free-
movement direction, respectively, are deduced as a test 
of the validity of the model. Applications of the model to 
T-shaped and squared quantum wires with and without 
the presence of electric and magnetic fields are given 
and discussed in Section 3.  

2. The model 

2.1. Basic equations 

Let us consider a QWR, of type I extending infinitely 
along the z-direction with xL  and yL  transversal 
dimensions. The confining potential is of arbitrary 
shape, say Ve(xe, ye) for electrons and Vh(xh, yh) for holes. 
In the hypothesis of uncoupled excitons and within the 
envelope function approximation, the Hamiltonian 
operator for the bound states of one exciton X reads, in 
the effective mass approximation:  

H = He + Hh + HX (1) 

where 
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Here Hi describes the (x, y)-movement of the carrier i 
(i = e, h) in the presence of the confining potential 
Vi(xi, yi) with the ground state energy Ei. In equation (3), 
Z is the relative position between the electron and the 
hole along z-axis: Z = ze – zh, r is their relative distance, 

µz is the reduced mass along the z-axis and *μ
μ

σ z=  

where µ* is the reduced electron-hole mass ratio defined 
by: 
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,hem  being the effective mass of the 

electron (e) or the hole (h). In this formulation, effective 

atomic units are used, i.e., 
2*
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e
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=  for distance, 

22
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2 ε
μ
h

eR =  for energy and *μ  for masses. ε  represents 

the dielectric constant which is set to be equal inside and 
outside the well, neglecting then the dielectric mismatch 
effect which is minor in comparison to the confinement 
effect mainly in the strong confinement regime [25]. The 
exciton problem is then solved variationally: the 
energies E and the wavefunctions ( )he rr rr ,Ψ  of the 
exciton are determined by minimizing the expected 
values of H with respect to a suitable set of variational 
parameters and the binding energies Eb are deduced from 
the relation: 

Eb = Ee + Eh – E.  (4) 

Owing to the hydrogen-like coupling between the 
electron and the hole, the most appropriate trial 
wavefunction may be set as follows: 

( ) ( )ΦΨΨ=Ψ hhheee yxyx ,, , (5) 

where the coupling factor Φ  is chosen conveniently to 
describe the exciton state, and eψ and hψ are obtained 



 
Semiconductor Physics, Quantum Electronics & Optoelectronics. 2005. V. 8, N 2. P. 12-21. 

© 2005, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
   

14 

by solving the Hamiltonian (2) for the electron and the 
hole respectively. Thus, for the ground state X1s, we take: 

⎟
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r
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and for the first excited state  
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where 2222' ZYXr ξ++= , X and Y being the relative 
positions in the (x-y) plane: X = xe – xh and Y = ye – yh. λ   
and ξ  are the variational parameters.  

2.2. General solutions  

In order to preserve the generality of the problem, we 
will derive the parameterized formula in terms of the 
coupling factor Φ  and its derivatives. Substituting (5) 
into the Schrödinger equation described by the 
Hamiltonian (1) and taking into account of (4), we 
obtain: 
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with dZdydydxdxd hehe=Ω . 
Since the effective mass mismatch effect in 

calculating the binding energy of the exciton is very 
small as mentioned in the previous work [27], the 
integration operations in equation (8) may be performed 
over all the structure by making constant the effective 
mass, equalled to its value in the well. The calculation 
reduces then to some analytic manipulations involving 
the coupling factor Φ . For details of the procedure see 
reference [27]. In the present case, the parameterized 
binding energy writes:  

)(
)()(2

F
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where the operator ℑ  is defined by  
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P(X, Y) being the probability of finding the electron and 
the hole separated by X and Y which writes: 
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In these equations, the entities F, J, K, and G are given 
by: 
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In the same way, the spatial extensions of the exciton 
along the axes express simply as follows: 
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It results from these equations that the crucial step for 
solving the exciton states is to know the representative 
function ),( YXP , denoted hereafter by the P-function, 
which is in turn function of the one-particle wave-
functions. Thus, the proceeding in what follows consists 
in determining first the one-particle states and then the 
P-function from which the parameterized equations of 
the binding energies and extensions of the exciton are 
deduced via equations (9) and (13). Before turning to the 
applications of the method, let’s note that the 
parameterized expression of the energy, equation (9), is 
in fact the sum of the rinetic part of the energy, i.e., 

)(
)(),(

F
JT

ℑ
ℑ

=ξλ  and the attractive Coulomb part, i.e., 

)(
)(2),(

F
KU

ℑ
ℑ

−=ξλ  which makes it easy, after minimi-

zation the total energy functional, to deduce the kinetic 
and the electric potential energies in terms of the entities 

)(),( JF ℑℑ  and )(Kℑ . 
To make easy the use of our results for desirable 

cases, we have preserved the generality by using 
dimensionless units, i.e., 1== BaR  where R and Ba  
are the Rydberg energy and the Bohr radius, respec-
tively, of bulk exciton for well material. 

2.3. Limiting cases 

Before giving the variations of the exciton properties for 
various shapes and sizes of the wire, it is interesting to 
examine how the equations established above transform 
within the limiting cases of three, two and one 
dimensional structures. Indeed, the asymptotic behaviour 
of the exciton with these limits is independent of the 
cross-sectional shape, and it may be used as a test of the 
validity of the model. The former case corresponds to 
the situation where the exciton is quasi-free, as in the 
bulk material; for the second case both electron and hole 
are assumed to be confined in a same plane, while in the 
latter case the confinement is supposed to be exactly of 
the one-dimensional one. 
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a) 3D-exciton. Approaching the bulk-well material limit 
( ∞→xL  and ∞→yL ), the confinement functions eψ  

and hψ  become smooth, i.e. 0, ≈∂ YX and taking into 
account the spherical symmetry (ξ≈1), we obtain: 
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Substituting these expressions into equation (9) and 
making 1=σ , as required for isotropic masses, we obtain: 
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s aXYZ . Let’s note that this 
case corresponds also to the limiting situation of 
infinitely narrow wire ( )0,0 →→ yx LL where the 
exciton takes the bulk-barrier character: the carrier wave 
function spreads and penetrates into the barriers making 
the binding energy decrease towards the value 
appropriate to the bulk barrier material (which is 
supposed here to be equal to that of the bulk well 
material because of the approximation made of equalling 
masses and dielectric constants)  

Similarly, for the 2s-exciton, we obtain, with 3D-
limiting case: 
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b) 2D-exciton. This case corresponds formally to the 
state for which the binding energy reaches its top limit 
value: both the electron and hole are assumed to be 
confined in the same plane (X = 0, ∞→yL ). It may be 
considered as the projection of the relative movement of 
the exciton in the (y, z)-plane. The coupling factor Φ  is 
thus given by: ⎟

⎠
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λ
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where ρ  is the polar 

radius in the (y, z)-plane. Then, we obtain, for isotropic 
masses ( 1=σ ): 
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expression given by G.W. Bryant et al. [29].  

For the 2s exciton, within the 2D-limiting case, similar 

calculation gives: 
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coupling factor in this case is given by the first excited 

state of the 2D-hydrogen atom, i.e., λ
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c) 1D-exciton. This second formal case corresponds to 
the theoretical complete confinement along the two 
directions; the two particles being free only along the z-
axis. It is in fact the projection of the relative movement 
along this axis. Thus, it can be assimilated to the 
problem of a one-dimensional hydrogen atom. In this 
case, the admissible coupling factor may be approached 
by [30]: )/exp(1

1 λφ xxD
s −=  for the 1s exciton and 

)/exp()/( 21
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s −−=  for the 2s exciton. Which 
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As it can be seen, this result, obtained in elementary 
way, agrees with that obtained by M. Combescot et al. 
[31] in the framework of a complete theoretical study.   

3. Applications 

We have applied the method described above to study 
excitons in realistic T-wires and SQWRs based on  
Ga1-xAlxAs/GaAs structures. As it arises from equations 
(9)–(13), the key of the problem consists in finding the 
characteristic P-function which depends exclusively on 
electron and hole states of the structure. For the hole’s 
ground state, we have considered only the heavy hole 
neglecting then the valence band mixing [32, 33]. The 
correspondent mass components were calculated in 
terms of the Luttinger band parameters [7], i.e. 

21

0

γγ +
=

mmxy
hh  and 

21

0

2γγ −
=

mmz
hh . The physical 

parameters used for numerical applications are listed in 
Table 1.  
 
Table 1. Physical parameters used for the calculations of 
binding energies and spatial extensions of the excitons. 

Symbol Parameter Unit Ga1-xAlxAs 

Eg 
ΔEc /ΔEv 

me  

 

energy gap 
band offsets 

electron mass 

Luttinger  
parameters 

eV 
 

m0 

1.519 + 1.138x + 0.47x3 

67/33 
1/(14.9–8.2x) 

7.1–3.34x 
2.02–1.12x 

   

⎭
⎬
⎫

2

1

γ
γ
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3.1. SQWRs 

In this case, the potential (for both electron and hole) is 
supposed to be zero in the well and constant in the 
barrier say: 

( )
0,

0 / 2; / 2
,
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i i

i i i
i

for x L y L
V x y

V
⎧ < <⎪= ⎨
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where L  is the side width of the wire. To show the 
suppleness of the method, we first consider the case of 
infinite confining potential (V0,i = ∞). The one particle 
ground state is then fully described by the wave 
function:  
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= iiiii y

L
x

L
yx ππψ coscos, . (16) 

 
It follows that the P-function takes the form: 
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and similar expression for Py(Y), what reduces 
considerably the numerical calculation steps.  

For a finite barrier height V0,i, variable-separable 
functions  

( ) ( ) ( )iiiiiii ygxfyx =,ψ  (18) 

were used as a solution of the one particle problem with 
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For L = 5.5 nm, we find meV  108=eE  for the 
fundamental state. This value is in very good agreement 
with that obtained by M. Tsetseri et al. [28] where the 
finite difference method is used. The analytical 
expressions for electron and hole states given by 
equation (19) were thus used for determining the P-func-
tion of the exciton. In this case too, that function 
separates as a product of two symmetric components 
Px(X) and Py(Y) but not takes a simple analytical form. 

So it was calculated numerically. In Fig. 1, we report the 
binding energy (a), the extensions exZ (b) and exρ  (c) of 
the heavy hole exciton (X1s) as a function of the width of 
the wire for different values of x-Al concentration. As it 
is seen, for each value of x, the binding energy increases 
with decreasing L, reaches a maximum value and 
decreases monotonically. All the curves extrapolate to 
the exact value of the bulk material at vanishing and 
infinite L (barrier material for 0→L  and well material 
for ∞→L ). The peak in energy occurs for L ranging 
between 0.2 and 0.3. It corresponds to the case for which 
the probability of finding the electron and the hole 
outside the well is negligible. Concerning the extensions, 
Fig. 1b,c highlights clearly the effect of the confinement: 
the exciton is compressed in both transversal and 
longitudinal directions, and compresses as well as the 
barrier rises. Here also, Zex and exρ  approach the bulk 
material values for large well widths, decrease with 
lowering L with a pronounced minimum located at 
around the value maximizing the binding 
 

 
Fig. 1. L-dependence of the binding energy (a), z-extension (b) 
and the in-plane extension (c) of the X1s exciton for the SQWR 
based on AlxGa1-xAs/GaAs/AlxGa1-xAs structure for x = 0.15, 
0.30, 0.40 and infinite barrier (from down to up for the energy, 
inversely for the extensions). 
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Fig. 3. Lx-dependence of the binding energy (a), z-extension (b) 
and the in-plane extension (c) for Ly = 0.5 (solid), Ly = 1 (dashed) 
and Ly=2 (dotted) of the X1s exciton in rectangular-parabolic 
confining potential for Al0.4Ga0.6As/GaAs/ Al0.4Ga0.6As squared 
cross-section wire. 

energy, and increase again approaching the bulk shape 
for infinitely narrow QWW. This behaviour is similar to 
that obtained for the exciton in a rectangular quantum 
well reported recently in reference [27]. For the infinite 
barrier, both Zex and exρ  decrease monotonically with 
decreasing L. Characteristics of the excited state of the 
exciton X2s for the same structure are shown in Fig. 2 for 
a finite barrier (x = 0.4). They present the same 
behaviour than the 1s exciton with a maximum of 4.60 
reached at about L = 0.3.  

We have also examined the theoretical case where 
the confining potential is parabolic along the x-direction 
and rectangular along the y-direction, say 
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Then, the one particle wavefunction can be taken as: 
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x
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It is easy to show that in these conditions the function 
Px(X) may be calculated analytically and takes the 
following form: 
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whereas Py(Y) is given by equation (17) with the relevant 
coordinates. 

In Fig. 3a we report the 1s exciton binding energy in 
GaAs-Al0.4Ga0.6As quantum wire, within the latter 
confining potential configuration, as a function of  
Lx-wire width for different values of Ly. Fig. 3b, c shows 
the z-extension and the in-plane extension of the exciton 
for the same structure. We note that this confining 
potential geometry enhances the binding energy and 
enforces the localization of the exciton comparable to 
the previous studied geometry. 

 
Fig. 2. L-dependence of the binding energy (a), z-extension and 
the in-plane extension (b) of the X2s exciton for the SQWR based 
on Al0.4Ga0.6As/GaAs/Al0.4Ga0.6As structure. 
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3.2. T-Wires 

For the T-shaped wire, it is not easy to get the one 
particle function in a simple and analytic form likely to 
facilitate the calculation of the P-function. Nevertheless, 
we have found that a judicious transformation of the 
coordinates reduces the problem to that of two separate 
quantum wells. Successful and precise results were 
obtained for the first three electronic levels of T-wires 
with various dimensions of the wire. Details of these 
calculations will be published soon. The P-function, and 
then binding energies Eb of excitons for T-wires, were 
thus deduced easily in the same way as for the case of 
SQWR. We initially tested the method by confronting 
our results with those reported in the literature for the 
case of AlAs/GaAs T-wires. Referring to the structure 
studied in [34] for which the same physical parameters 
were ued, we have calculated Eb of X1s excitons for 
L = 5.3 nm, as stem width, and d ranging between 4.5 
and 6 nm, as arm width. Our calculated values were 
ranged between 22.41 and 19.61 meV, slightly lower 
than those roughly estimated in that reference according 
to photoluminescence spectra analysis. In turn, our 
values are clearly higher than those obtained by 
G. Goldoni et al. [25] where the calculation is based on 
multisubband semiconductor Bloch equations. Let’s 
note, in passing that, contrary to the remark advanced by 
the authors in that reference, the virial theorem holds 
also for Coulomb-interacting particles even in the pre-
sence of the confining potential provided that the genera-
lized form of the theorem is used (the virial “coefficient” 
is then not constant and depends on the form of the 
potential). Fig. 4a shows the dependence of Eb on the 
size of the wire for balanced T-wires (L = d) based on 
Ga0.6Al0.4As structure. Comparison of our results with 
those reported in that reference shows very good 
agreement. In Fig. 4b, we report the variations of the 
extensions of the exciton along the three characteristic 
directions versus the dimension of the wire for the same 
structure. This result shows that the extension along the 
stem direction is more sensitive to the confinement than 
extensions along the remaining axis while the stretching 
of the exciton is more marked along the arm direction.  

The above findings show that the influence of the 
cross-section geometry of the wire is not minor. They 

indicate that the square-like geometry may be 
advantageous for obtaining higher binding energies and 
more localized excitons in comparison with T-like 
geometry: enhancement rate of the binding energy may 
exceed 25% and stretching of the spatial extensions 
along the three directions are more pronounced. In 
Table 3, we have assembled, for comparison, some 
characteristics of the excitons in the two geometries: T-
shaped and squared cross-section wires.  

3.3.  Action of electric and magnetic fields 

As an original application of the method, we have 
examined the effects of a magnetic field, applied parallel 

Table 2. Values of the binding energy Eb, the Bohr radius a, 
and the extensions X, Y, Z of 1s (2s) excitons for the limiting 
cases of 3D, 2D and 1D structures. The values are in the 
Rydberg energy and the Bohr radius of the bulk GaAs 
material (see Table 1). 

 )( 21 s
b

s
b EE  )( 21 ss aa  )( 21 ss XX  )( 21 ss YY  )( 21 ss ZZ

3D 1 (
4
1 ) 1 (2) 1 ( 14 ) 1 ( 14 ) 1 ( 14 ) 

2D 4 (
9
4 )  

2
1 (

2
3 ) – 

4
3 (

2
3 )

4
3 (

2
3 )

1D 1 (
4
1 ) 1 (2) – – 3 ( 42 )

 
Fig. 4. L-dependence of the binding energy (a), z-extension, x-
extension and y-extension (b) of the X1s exciton for the TQWR 
based on Al0.4Ga0.6As/GaAs/Al0.4Ga0.6As structure. Inset the 
schematic diagram of the studied wire. 

Table 3. Comparison of the exciton properties for SQWR 
and TQWR for Ga0.6Al0.4As structure. Between brackets 
indicated are the values of the well width associated with 
the extrema of the energy and X, Y, Z. The values are in the 
Rydberg energy and the Bohr radius of the bulk GaAs 
material (see Table 1). 

 )( max
max LEb

)( minmin LX  )( minmin LY  )( minmin LZ

TQWR 4.2 (0.21) 0.33 (0.3) 0.13 (0.22) 0.53 (0.22)
SQWR 5.2 (0.22) 0.18 (0.22) 0.18 (0.22) 0.47 (0.22)
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to the z-axis and an electric field, applied parallel to the 
x-axis for SQWR. The effect of a constant electric field 
on the optical properties of quantum wells has been early 
investigated and it is known as Confinement Quantum 
Stark Effect. It results generally in a red shift of the PL 
peak positions with increasing electric field strength F 
causing then a broadening of the exciton and decrease of 
its energy. This effect predominates especially for 
sufficiently wide wells where the confinement becomes 
weak [35]. These features are generally interpreted as a 
competition between the field-induced spatial separation 
between electron and hole along the direction of the field 
and the barrier-induced confinement. In this section, we 
will show how these properties are modified in the case 
of SQWRs where an additive confinement along the 
second growth-direction is present. The resolution of the 
problem is made in the framework of the model 
developed in Section 2 by calculating the P-function in 
terms of the one-particle wavefunctions where the field 
effect is included. On the other hand, it is now 
established that when a magnetic field is applied along 
the free-movement direction, the exciton in a quantum 
well squeezes, and its ground state energy shifts almost 
linearly with the field, as a consequence of the Landau 
quantization of the carrier states [36]. For T-shaped 
wires, analysis of magnetophotoluminescence measu-
rements has concluded to a weak magnetic field-induced 
energy shift [37]. It has been demonstrated [38] that this 
small field-induced energy shifts is consistent with the 
hypothesis of weak T-junction confinement rather than 
that of 1D quantum confinement. We give in what 
follows the magnetic field-induced energy shifts of the 
exciton for SQWR and confront our results with those of 
T-wires. The calculation is performed, as in the case of 
the electric field effect, by determining the P-function in 
terms of the electron and hole states in the presence of 
the field. First, we derive the general equations when the 
electric and the magnetic fields are applied 
simultaneously. It is clear that the for configuration of 
the fields considered here, the movement of the free 
carriers is not affected by the fields along the z-axis. The 
fundamental one-particle wavefunctions can thus be 
chosen as x- and y-dependent only. They were calculated 
variationally by using the following commonly used trial 
functions: 

[ ])(exp)1)(,(),( 220
iiiiiiiii yxxyxBF +−+= βαψψ

 
(24)

 

 
where iα  and iβ  are the variational parameters and 0

iψ  
is the known wavefunction of the particle i (i = e,h) in 
the absence of the field. The additive term in the 
Hamiltonian of the one-particle problem when the fields 
are applied may be written as follows: 
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where “+” and “–” signs hold for the electron and the 
hole respectively and the dimensionless parameters γ  

and η  given by: 
R

Be
*2μ

γ h
=  and 

R
FeaB=η . The 

calculation was performed for the case of the square-like 
wire based on Al0.4Ga0.6As system. The results are 
plotted in Fig. 5 for the binding energy and Fig. 6 for the 
spatial extensions of the exciton. Effects of electric 
(dotted line) and magnetic (dashed line) fields are 
reported in comparison with the unperturbed system 
(solid line). Following features can be noted:  

(i) The influence of the electric field is effective only 
when the wire-width values exceed the limit of Ba5.0 . 
This limiting value is consistent with that which one can 
estimate after the pondering condition between the 
electric field and the confinement effects, i.e., 

)0(iEFeL >  where )0(iE is the energy of the carrier in 
the absence of the field. When this condition is satisfied, 
the induced-electric field effect results in decreasing 
energy with higher rate than without field in addition of 
a broadening of the exciton even in the directions 
perpendicular to the field with larger relative expansion 
along the direction of the field. 

(ii) The magnetic field remains ineffective as long as 
the well width values do not exceed the bulk-exciton 
Bohr radius Ba . For BaL > , the magnetic field acts as 
an additive confinement by enhancing the binding 
energy and squeezing the exciton in the transversal plane 
as well as along the z-axis. These trends are compatible 
with those reported by A. Balandin et al. [39] where the 
exciton trial wave function was of the Gaussian type.  

It is interesting to compare these results to those 
obtained by using the same method, when the exciton is 
confined in one direction only, i.e. in one quantum well. 
We have made this comparison for Ga0.6Al0.4As 
structure. The result was as follows. First, we have noted 
that the binding energy, as a function of the well-width, 
shows similar trends in the two configurations both 
when electric and magnetic fields are applied. More 
precisely, the relative decrease in energy (calculated for 

200=L Å as illustration) for SQWR when the electric 
field ( kV/cm 50=F ) is applied is approximately twice 

 
Fig. 5. L-dependence of the binding energy of the exciton X1s 
confined in Al0.4Ga0.6As/GaAs/Al0.4Ga0.6As squared wire in the 
presence of the electric field kV/cm 50=F  (dotted), the 
magnetic field B = 20T (dashed) and without field (solid line).
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the same decrease calculated for the corresponding QW, 
while the relative expansion along the direction of the 
field falls of half passing from 100% in the QW to 60% 
in the SQWR. It shows that the induced-electric field 
effect in SQWRs is roughly twice marked than in 
corresponding QWs. On the other hand, the 
enhancement of the energy induced by the magnetic 
field is much more marked in the QW than in the SQWR 
where it can be neglected in the usual confinement 
regime. Similar behaviour was reported for T-shaped 
wires when compared with the corresponding quantum 
wells [38]. 

4. Conclusions 

Using a variational calculation in the effective mass 
approximation and the two-band model, we have 
established a set of parametrized equations to be used for 
calculating exciton properties in quantum wires for any 
potential profile. Illustration is given for T-shaped and 

SQWRs based on GaAlAs/GaAs structures. Comparison 
of the two systems shows that the confinement effects 
are slightly enforced for the squared geometry: the 
binding energies are higher and the spatial extensions 
more reduced except for the stem direction where the 
extension is lower in T-wire than in the corresponding 
squared wire. A new theoretical configuration where the 
confining potential is parabolic along the x-direction and 
rectangular with infinite height barrier along the y-di-
rection was also considered. The study reveals that this 
confining potential configuration enhances the binding 
energy and enforces the localisation of the exciton with 
respect to the corresponding squared wire. The method 
was extended to study the effects of both electric and 
magnetic fields on the excitons in the SQWRs studied 
structures. It has been found that the induced-electric 
field effect results in decreasing energy with higher rate 
than without field in addition of a broadening of the 
exciton even in the directions perpendicular to the field 
with larger relative expansion along the direction of the 
field. It has been found also that the magnetic field acts 
as an additive confinement by enhancing the binding 
energy and squeezing the exciton in the transversal plane 
as well as along the z-axis. Comparison of these results 
with those obtained for corresponding T-wires or 
quantum wires shows that the induced-electric field 
effect in SQWRs is roughly twice marked than in 
corresponding QWs while the enhancement of the 
energy induced by the magnetic field is much more 
marked in the QW than in the corresponding SQWR as 
well as in the corresponding T-wires.  
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