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Abstract. The comparative analysis of the band structure and carrier kinematics for n-
Cd3As2 and p-Zn3As2 has been executed. The influence of presence and absence of 
symmetry center in different crystalline phases of the above materials is explored. The 
direct and indirect solutions of dispersion equations were used for the analysis. The 
results of researches are presented in the form of graphic dependences. The splitting of 
energy bands caused by the symmetry center loss is estimated. Such splitting is maximal 
along any directions normal to the main crystalline axis. The principle possibility of the 
carrier separation by spin with the use of found distinction for the modules of their 
velocities is shown. 
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1. Introduction 

Cd3As2 and Zn3As2 have the equivalent polymorphic 
transformations below 500 K with the loss of centers of 
symmetry. As a result, the symmetry is lowered from 

mmm/4 ( hD4 ) to mm4 ( vC4 ). Both crystals possess 
very similar lattices with 160 atoms per a cell, 
demonstrating the small tetragonal tensions: 

0 < 1
2

1 −=−
a
c

η  << 1 [1]. Besides, their cells can be 

considered only as slightly divergent, if comparing the 
pair of crystal modifications with mmm/4 ( hD4 ) and 

mm4 ( vC4 ) symmetries, not only without but with the 
center of symmetry, making it individual for each of 
both materials, of course. These cells differ only by one 
of the four layered atom packets, which create such a 
cell [2]. 

However, these materials possess also a few 
essential distinctions, despite the undoubted similarity of 
their crystalline forms. Firstly, there is a difference 
between the standard and inverted band structures: 

0>gε  for Zn3As2 and 0<gε  for Cd3As2. Secondly, 
there is a contrast of their types of the conductivity: p-
type and n-type, respectively [1, 2]. As a result, the 
typical concentrations and carrier mobility differ within 
a few orders: these are much higher for Cd3As2. 

Therefore, Zn3As2 is a typical semiconductor, whereas 
Cd3As2 looks like a semimetal. Thus, the proper Fermi 
levels are located not only within visibly different 
energy intervals but even within different energy bands 
of both materials. 

Recently the simple band model was proposed for 
Cd3As2 [3]. On the one hand, this model is a 
generalization of well-known Kane’s and Kildal’s 
models [4, 5]. On the other hand, the model [3] enables 
to take into account the symmetry center loss and the 
small tetragonal tensions. Moreover, this theory can be 
appropriately used both for semiconductors ( 0>gε ) 

and semimetals ( 0<gε ). Below it is used to describe 
the crystals with and without the symmetry center. 

These arguments suggested an idea to use the 
mentioned model for the comparative analysis of two 
materials within the framework of joint description. Let 
us define the main goal of such analysis as the 
investigation of the influence of symmetry center losses 
on the feature of the energy band structures and 
properties of carriers in the relevant energy bands. 

2. Basic equations and way of calculations 

The dispersion law has the following form within the 
model [3], if to apply the spherical system of coordinates 
(k, θ, φ): 
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The same expression has somewhat different form 
if to use the cylindrical system of coordinates (kz, kxy, φ): 
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Four polynomials for the energy ε  are used in the 
identical forms: 
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There, Pg ,, Δε  are three well-known Kane’s 
parameters [4] (the energy gap, spin-splitting parameter 
and matrix element of the pulse); δ  is the known 
parameter of the crystal field [5] and d  is another 
parameter of the crystal field, which describes the 
absence of the symmetry center [3]; η  is the scalar 
factor taking into account the lattice deformation 
(mentioned and described above). The zero of energy 
( 0=ε ) is united either with the top of the band of heavy 
holes (if 0>gε ) or with the bottom of the conduction 

band (if 0<gε ). 
It is noticeable that Eqs (1), (2) are independent 

onϕ . Therefore, the surfaces of the equal energy are 
surfaces of rotation around the main crystal axis that is 
the polar axis, too [3]. 

The right parts of Eqs (1) and (2) have the trivial 
forms as product of two factors (let it be 

( ) ),,(,,, θεθε βα kPkP for Eq. (1), and ( ),,, xyz kkP εα  

),,( xyz kkP εβ  for Eq. (2)), because each of them is a 
difference of two quadratic items. For instance, Eq. (1) 
can be rewritten: 

( ) 0),,(,, =θεθε βα kPkP . (7) 
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The polynomials ( ) ),,(,,, xyzxyz kkPkkP εε βα  
are structurally similar without any doubts. 

Let us note, that βα
PP =  primarily if 0)(3 =εf . 

These conditions might be fulfilled for any energy only 
as for the crystal modifications with the symmetry center 
(because  0=d in this case). Therefore, each energy 
level should be twice degenerated. Obviously, it ought to 
be the well-known Kramers’ degeneration. If 0≠d , 
then βα

PP ≠  and these are the conditions for the 
phases without the symmetry center. Now the equations 
like 0=αP  and 0=βP  have different solutions and the 
mentioned above degeneration is over. 

Factorization (7) allows decreasing the orders of 
the dispersion equations. For instance, the equations 

0=αP  and 0=βP  have the fourth order for functions 

( )θε βα ,, k  (or ( )xyz kk ,,βαε ). These direct solutions 
might be obtained even in radicals, although proper 
expressions are quite cumbersome and unbelievably 
long. This circumstance seems to make no impression on 
a computer, in a contrast with its users. Someone can get 
indirect (implicit) solutions, too. This function 

( )θεε βα ,,  or anything like to ( ( )zxy kk ,ε , ( )xyxy kk ,ε ) 
within the cylindrical system of coordinates, for which 
the equations (8), (9) are quadratic. These indirect 
solutions can be also useful as the direct solutions, being 
at the same time much shorter and simpler. What is 
more, they can serve to verification of any conclusions 
attained by using the direct solutions. 

For instance, the velocity of carriers may be 
obtained simply as the gradient of a direct solution for 
their energies ( )θε βα ,, k : 

)),((grad1
,, θε βαβα kkv

h
= . (10) 

On the other hand, the same result may be obtained 
from indirect solutions, or even from functions 

( ) ),,(,,, θεθε βα kPkP , using the well-known 
mathematical technique of the implicit derivatives. 

Our calculations were leaning mostly on the 
presented above collection of simple expressions as well 
as on the following limited set of numerical parameters 
built-in into these (see Table 1). 

It did not matter how bulky and lengthy may be 
some analytic expressions for a calculated result, on 
occasion. The main focus of the attention for us was to 
be in that point to represent such results in the forms of 
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Table. Parameters of materials. 

Parameter εg , eV eV,Δ  meV, ⋅P  eV,δ  d, eV η  

Material     D4h C4v D4h C4v 
Zn3As2 0.98 0.26 7.6·10-10 0.07 0 0.035 1.00218 1.00352 
Cd3As2 -0.13 0.30 7.2·10-10 0.09 0 0.035 1.00471 1.00565 
 

(a) (b) 

 
Fig. 1. The dependences )(knε  along the θ = 2

π directions: for Zn3As2 (a) and Cd3As2 (b). 

graphic dependences, evident and relatively simple. That 
is why this paper may be evaluated by someone as some 
illustrative overloading, although only on the face of it, 
how we are hoping. 

3. The results and discussions 

An old and good tradition requires the demonstration of 
the dependences of the carrier energy versus the module 
of the wave vector, or rarer of the pulse, under the 
condition of an unchanged direction. It is shown in 
Fig. 1 as the dependences ( )knε . It corresponds to the 
rectilinear motion of a carrier with some tangential 
acceleration, but in the absence of a normal acceleration. 
Both graphics present only the substantial part of the set, 
which consist of four energy bands, as a whole. So, the 
Fermi level is located anywhere either within or nearby 
presented pair of the energy bands. It is the pair of the 
bands of heavy and light holes, of course. Although it 
would be better to replace a term “heavy holes” by 
“heavy carries” as for cadmium arsenide. 

There is the visible splitting of two sub-bands with 
the opposite spin states, which are located on both sides 
from a middle line (the sets of cross-like or circle-like 
points). These middle lines are the twice degenerated 
energy bands for the structures with the symmetry 

centers. This splitting is obviously caused by 
disappearing the symmetry center after the 

mmm/4 ( hD4 )→ mm4 ( vC 4 ) transition and, thus, it is a 
result of the removal of Kramers’ degeneration. 

The dependences of the magnitudes of this splitting 
on the module of the wave vector as well as its 
dependences on direction (the polar graphic) are shown 
for all bands in Fig. 2. In this figure, shown are the 
dependences for cadmium arsenide. However, the same 
dependences for zinc arsenide are exceedingly similar to 
those presented in Fig. 2, even in shallow details. The 
opposite sign of such splitting literally “strikes the eyes” 
as for one of these bands. Such a feature characterizes 
the bands of light holes of both materials. The maxima 
of the splitting magnitude correspond to θ = 2

π  that 

describes the directions normal to the main crystal axis, 
whereas along this axis the splitting is absent. Even the 
greatest magnitudes of them are rather moderate and do 
not exceed a few hundred stakes of electron-volts, 
because the same order has the relevant parameter d  
(see Table). 

Other, and in a manner reverse approach look as if 
also reasonable from the physical point of view. That is 
study of solely cyclic motion of a carrier with some 
normal acceleration, but without any tangential 
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(a) (b) 

 
Fig. 2. The dependences of the spin splitting magnitude vs the module of the wave vector (a) and vs the direction (b), supposing 
that the horizontal axis of the polar plot (b) coincides with that for the main crystal axis. 

(a) (b) 

 
Fig. 3. The polar plot of the dependences )(θε n  for Zn3As2 (a) and Cd3As2 (b). 

components. At that rate, everyone would be interested 
in the dependences of the energy versus the direction of 
the carrier wave vector under the condition of its 
invariable module. These dependences are shown in 
Fig. 3 as curves ( )θε n  for the same pair of bands as in 
Fig. 1. All symbols of Fig. 3 mean the same as those in 
Fig. 1. It is well seen from comparison of the 
dependences in Figs 1 and 3 that they seem to be very 
different in Fig. 1, while in Fig. 3 they are practically 
indistinguishable. Second observation is that energy 
anisotropy on the spherical surface const=k  is much 
greater for the heavy carriers. 

If examine the modules of the carrier velocities, it 
ought to be keeping in mind, that the heavy and light 
holes are the major carriers only in zinc arsenide. 
Opposite, the light and heavy electrons are the same in 
cadmium arsenide. Let us begin with zinc arsenide. 

The velocities of the both different kinds of the 
holes are almost comparable by the magnitudes along 
the directions, which is normal to main crystal axis. 
Nevertheless, the directions that are close to the 
direction of the main axis ( 0≈θ ) are characterized by 
another and sharply different relations of these 
velocities. The anisotropy ought to be very strong as for 
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Fig. 4. Zinc arsenide: the polar plot of the velocity modules vs the direction for heavy holes (a) at the energies −25 and 
−15 meV, as well as for light holes (b) at −45 and −55 meV. The insertions remind about typical geometry and topology of 
surfaces of the equal energy. 

 

 
 

Fig. 5. Cadmium arsenide: the polar plot of the velocity modules vs the direction for heavy carriers at the energies −15 (a) and 
−40 meV (b). The inserts have the same meaning as above. 
 

the heavy holes, which may be extremely slow when 
moving along any direction close to the main axis. 
Furthermore, their velocities decrease with the energy in 
contrast to the light holes. 

The spin splitting of the carrier velocities is 
maximal along the directions normal to the main crystal 
axis. In other words, the modules of velocities of holes 
with an identical spin are quite not identical at motion 
back and forth along almost any direction, in particular, 
in the plane normal to the main crystalline axis. This is 
the obvious and direct consequence of the symmetry 

center loss. Opposite, the holes with the opposite spins 
will be never assorted by their velocities when moving 
along this axis. 

Below we consider the following material – 
cadmium arsenide. The data is presented by Figs 5 and 6 
separately. In particular, Fig. 5 illustrates the absolutely 
another behavior of the heavy carriers as compared to 
that shown in Fig. 4a for zinc arsenide. It may be 
explained taking into consideration first of them clear 
difference between the shapes of the equal energy 
surfaces (SEE) for heavy carriers. 
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Fig. 6. Cadmium arsenide: the polar plot of the velocity 
modules vs the direction for light electrons at the energies 25, 
50 and 120 meV, respectively. 

 
Nevertheless, all these effects caused by the 

symmetry center loss are also present in this case, of 
course. Essential changing the topology and geometry of 
SEE, which occurs between −15 and −40 meV cannot 
abolish these general peculiarities, in spite of bringing 
some individuality into them. Both parts of the previous 
sentence are well visible in Fig. 5. Both the strong 
anisotropy of velocities and the possibility of separation 
of carriers by their spins are evidently also common 
features for heavy carriers of both materials. 

The light electrons from the conduction band of 
cadmium arsenide demonstrate the dependences, which 
are very similar to analogous curves for light holes of 
zinc arsenide, in contrast to the heavy carriers. It 
becomes obvious from the comparison of Figs 4 and 6. 
Let us note that the influence of the symmetry centre 
loss weakens with increasing the energy module so that 
such influence becomes quite insignificant as for the 
strong degenerated samples of both materials. In other 
words, the effects of absence of the symmetry centre 
need to be searched in the samples with the lower 
concentration of carriers and with the Fermi energies 
that are closer to the band extremes. The degenerated 
samples are insensitive to it. 

4. Conclusions 

The main results of our analysis are as follows: 
1. The loss of the symmetry centre results in the 

splitting of the energy bands that are maximal 
along some direction normal to the main crystalline 
axis as well as for specific values of the wave 
vectors as for the different energy bands. 

2. The velocities of the carriers with the same spins 
are clearly various in relation to the motion “back 
and forth” almost along every direction. Such 
features allow to separate carriers in accord with 
their spins, in principle. 

3. The samples with the low concentration of carriers 
demonstrate the results of the absence of the 
symmetry centre better. Moreover, the velocities of 
heavy carriers are more sensitive in comparison 
with those of the light carriers, as well as the main 
carriers of p-Zn3As2 are more sensitive as 
compared with the electrons of n-Cd3As2 in the 
case of the absent symmetry centre. 

4. The heavy carriers of both materials demonstrate 
more pronounced anisotropy of characteristics for 
light carriers. 
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