Semiconductor Physics, Quantum Electronics and Optoelectronics, 10 (2) P. 006-010 (2007).
DOI: https://doi.org/10.15407/spqeo10.02.006


References

1. A.C. Eckbreth, Effects of laser-modulated particulate incandescence on Raman scattering diagnostics // J. Appl. Phys. 48(11), p. 4473-4479 (1977).
https://doi.org/10.1063/1.323458
2. R.L. Vander Wal and K.J. Weiland, Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction // Appl. Phys. B 59, p. 445-452 (1994).
https://doi.org/10.1007/BF01081067
3. F. Cignoli, S. Benecchi, G. Zizak, Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames // Appl. Opt. 33(24), p. 5778-5782 (1994).
https://doi.org/10.1364/AO.33.005778
4. R.L. Vander Wal, M.Y. Choi, K.-O. Lee, The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics // Combustion and Flame 102, p. 200-204 (1995).
https://doi.org/10.1016/0010-2180(95)00071-D
5. C.R. Shaddix, K.C. Smyth, Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames // Combustion and Flame 107, p. 418-452 (1996).
https://doi.org/10.1016/S0010-2180(96)00107-1
6. R.L. Vander Wal, Laser-induced incandescence: detection issues // Appl. Opt. 35(33), p. 6548-6559 (1996).
https://doi.org/10.1364/AO.35.006548
7. G.S. Eom, C.W. Park, Y.H. Shin et al., Size determination of nanoparticles in low-pressure plasma with laser-induced incandescence technique // Appl. Phys. Lett. 83(6), p. 1261-1263 (2003).
https://doi.org/10.1063/1.1599965
8. S. Zelensky, Laser-induced heat radiation in borate glass // J. Phys.: Condens. Matter. 10, p. 7267- 7272 (1998).
https://doi.org/10.1088/0953-8984/10/32/017
9. K. Mansour, M.J. Soileau, E.W. Van Stryland, Nonlinear optical properties of carbon-black suspensions (ink) // J. Opt. Soc. Amer. B 9(7), p. 1100-1109 (1992).
https://doi.org/10.1364/JOSAB.9.001100
10. S. Zelensky, Laser-induced heat radiation of suspended particles: a method for temperature estimation // J. Opt. A: Pure Appl. Opt. 1, p. 454- 458 (1999).
https://doi.org/10.1088/1464-4258/1/4/306
11. S. Zelensky, Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence // J. Luminescence 104, p. 27-33 (2003).
https://doi.org/10.1016/S0022-2313(02)00661-0
12. P. Roura, J. Costa, Radiative thermal emission from silicon nanoparticles: a reversed story from quantum to classical theory // European J. Phys. 23, p. 191-203 (2002).
https://doi.org/10.1088/0143-0807/23/2/313
13. K.M. Nashold, D.P. Walter, Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions // J. Opt. Soc. Amer. B 12(7), p. 1228-1237 (1995).
https://doi.org/10.1364/JOSAB.12.001228
14. X. Sun, R.Q. Yu, G.Q. Xu et al. Broadband optical limiting with multiwalled carbon nanotubes // Appl. Phys. Lett. 73(25), p. 3632-3634 (1998).
https://doi.org/10.1063/1.122845
15. P. Chen, X. Wu, X. Sun et al. Electronic structure and optical limiting behavior of carbon nanotubes // Phys. Rev. Lett. 82(12), p. 2548-2551 (1999).
https://doi.org/10.1103/PhysRevLett.82.2548
16. X. Sun, Y. Xiong, P. Chen et al., Investigation of an optical limiting mechanism in multiwalled carbon nanotubes // Appl. Opt. 39(12), p. 1998- 2001 (2000).
https://doi.org/10.1364/AO.39.001998
17. Z. Jin, L. Huang, S.H. Goh et al., Size-dependent optical limiting behavior of multi-walled carbon nanotubes// Chem. Phys. Lett. 352, p. 328-333 (2002).
https://doi.org/10.1016/S0009-2614(01)01468-3
18. S.K. Tiwari, M.P. Joshi, M. Laghate, et al., Role of host liquid in optical limiting in ink suspensions // Optics & Laser Technology. 34, p. 487-491 (2002).
https://doi.org/10.1016/S0030-3992(02)00047-6
19. S.K. Tiwari, M.P. Joshi, S. Nath et al., Salt-induced aggregation and enhanced optical limiting in carbon-black suspensions // J. Nonlinear Opt. Phys. Mater. 12(3), p. 1-5 (2003).
https://doi.org/10.1142/S021886350300147X
20. S.E. Zelensky, Self-induced attenuation of pulsed laser radiation in an aqueous suspension of submicron light-absorbing particles // J. Phys.: Condens. Matter. 15, p. 6647-6657 (2003).
https://doi.org/10.1088/0953-8984/15/40/003
21. H. Lowen, P.A. Madden, A microscopic mechanism for shock-wave generation in pulsed-laserheated colloidal suspensions // J. Chem. Phys. 97(11), p. 8760-8766 (1992).
https://doi.org/10.1063/1.463345
22. A.C. Beveridge, T.E. McGrath, G.J. Diebold et al., Photoacoustic shock generation in carbon suspensions // Appl. Phys. Lett. 75(26), p. 4204- 4206 (1999).
https://doi.org/10.1063/1.125583