
 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2008. V. 11, N 2. P. 178-187. 

 

 

© 2008, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

178 

PACS 81.16.Nd, 85.40.Hp 

Finding of the optimal parameters of animated  
and stereographic rainbow diffractive images 

I.S. Borisov1, V.I. Girnyk2, S.A. Kostyukevych3, V.I. Grygoruk1, K.V. Kostyukevych3 
1 - Taras Shevchenko Kyiv National University, Ukraine 
2 - Optronics PC, Kyiv, Ukraine  
3 - V. Lashkaryov Institute of Semiconductor Physics NAS Ukraine, Kyiv, Ukraine  
41, prospect Nauky, 03028 Kyiv, Ukraine, Phone: (380-44) 525-62-05; e-mail: sekret@spie.org.ua 
 
 

Abstract. We have considered the basic aspects of the technology of animated and 
stereographic rainbow images. These images can be included in Optical Security Devices 
(OSDs) in order to increase their structure complexity and to improve their protective 
properties. The cited technology provides, on the one hand, a simple identification on the 
visual level of verification and, on the other hand, the sufficient reliability against 
counterfeits. The last property is achieved at first by the division of the elemental unit on 
elemental regions of any adjusted shape with outline of the precision that is inaccessible 
for the recreation without Electron Beam Lithography Equipment (EBLE) which is used 
for the recording of OSDs. Second, the used encoding methods also assure the certain 
reliability. 

In the context of the paper, the theoretical discussion based a quantitative formulation of 
the Huygens--Fresnel law of the diffraction on an elemental diffractive grating is carried 
out. For other definite Conditions of Lighting and Observation of Diffracting Light 
(CLODL), the correlation between the slope angle of diffraction grating strokes and the 
corresponding horizontal parallax angle is got; and the parameter which defines the 
channel selection (the quality of splitting into separate channels) is introduced. The rule 
for the definition of the wavelength and the intensity of light that diffracts on a given 
grating under certain CLODL is derived as well. This fact allows one to create the 
software utility that models the behavior of anigrams or stereograms. 
An algorithm of the synthesis of anigrams and stereograms as parts of OSDs using the 
technology of a composite “figure” elemental unit (that is composed from parts of any 
shape) and applying the halftone encoding by the period, filling, and achromaticity or all 
these parameters at once is elaborated, and its software implementation is constructed. 
The criteria for the choice of such anigram’s parameters as the resolution, number of 
channels, and angle distances between them are elaborated. In order to check them, the 
results of tests are summarized. The investigation of the optimal parameters of halftone 
images’ encoding finding is implemented, and the results obtained for the tough and 
flexible linkings of a channel to the subregion of an elemental unit for hatching images 
are compared. 
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1. Introduction 

The application of OSDs as a reliable inexpensive means 
of protection of values, documents, and goods against 
counterfeits acquires a great spreading for the last time. 
So the problem of raising the OSD’s protective 

properties becomes more and more topical. One of the 
ways of solving this problem is to increase the OSD’s 
structure complexity. In order to attain this purpose, the 
methods of computer synthesis of stereographic or 
animated rainbow diffractive images were elaborated. 
Stereograms and anigrams are enough spectacular and 
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Fig. 1. Incidence-diffraction plane 

 
Fig. 2. Space disposition of EDG. 

visually impressive. Stereograms are similar to the 
Computer-Generated Rainbow Holograms (CGRHs) of 
3D images [1-9] both by the appearance and by the 
function and can be included as a component into OSDs 
of the polygram type [1]. The presented animated or 
stereographic images are entirely computer-generated 
and are recorded with the use of the EBLE [10-11]. The 
technique of stereograms is based on the principle of the 
human vision physiology of 3D visual perception – the 
principle of binocular stereoscopy. The sequence of 
angle shots of a 3D scene is encoded into the diffractive 
structure of a holographic stereogram with the space-
division method. The theory and the means of this 
encoding are presented in the following sections. 

2. Theoretical basis of the construction  
of multiplex diffractive images 

2.1. Theory of the diffraction on an elemental diffractive 
grating. 

In this section, we discuss how the reflective phase 
Elemental Diffractive Grating (EDG) works. Let us 
introduce a left-sided right-angled Cartesian coordinate 
system (CCS), whose center coincides with the center of 
the considered planar EDG, and the Ox  axis is 
perpendicular to the SOP  plane, where SO  is the 
incidence beam and OP  is the diffracting beam. Thus, 
the SO  and OP  beams lie in the yOz  plane. Let the 
angle which lies aside clockwise from the Oz  axis to 
the incidence beam OS  under observation from the 
semispace of the positive x  be denoted as 0ϕ , and let 
the angle which lies aside counterclockwise from the 
Oz  axis to the diffracting beam OP  under observation 
be denoted as ϕ  (Fig. 1).  

Let the zO ′  axis be constructed parallel to the 
normal to the front side of the EDG plane (see Fig. 2). 
Then we denote the line of intersection of the EDG plane 
with the zOx  plane as xO ′  and select the xO ′  axis 

direction in such a way that the axes zO ′ , Oy , and xO ′  
compose the left-sided CCS. Let the angle which lies 
aside counterclockwise from the Ox  axis to the xO ′  
axis under observation from the semispace of the 
positive y  be denoted as ψ . Let the projection of the 
Oy  axis on the EDG plane be denoted as yO ′ ; let the 

yO ′  axis direction be selected in such a way that the 
axes zO ′ , xO ′ , and yO ′  compose the left-sided CCS. 
As β , we denote the angle which lies aside 
counterclockwise from the Oy  axis to the yO ′  axis 
under observation from the semispace of the positive x′ . 

And, finally, let the angle which forms the line of 
an EDG’s stroke with the xO ′  axis be designated as γ . 
Next, let the zyxO ′′′′′′  CCS be formed by rotating the 

zyxO ′′′  CCS by the angle γ  counterclockwise under 
observation from the semispace of the positive z′ . 

Figure 3 shows the topology of the EDG structure 
in its relative plane ( yxO ′′  or yxO ′′′′ ) and the EDG’s 
stroke profile that is set by the function ( ) 0, =′′′′ zyFn   
on the interval ( ) dnydn ⋅+<′′≤⋅ 1 , where d  is the 
EDG period. 

Fig. 3 shows the topology of EDG structure in its 
relative plane ( yxO ′′  or yxO ′′′′ ) and EDG’s stroke 
profile that is setting by the function ( ) 0, =′′′′ zyFn  on 
the interval ( ) dnydn ⋅+<′′≤⋅ 1 , where d  is the EDG 
period. 

After the geometry of a space disposition of the 
EDG relative to the incident and diffractive beams is 
determined, as well as geometric parameters of the EDG 
itself are defined, we proceed to the finding, first, the 
optical path difference ( )zyx ′′′′′′∆ ,,  between the incident 
and diffractive beams as components of the given 
incident and diffracting waves at the point ),,( zyxA ′′′′′′  
and at the point )0,0,0(O  of the diffractive structure, 
and, second, the area ndf  perpendicular to the incident 
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a) structure 

 
b) profile 

 
Fig. 3. EDG’s topology 

beam which is cut by the bundle of rays that diffract on 
the EDG’s surface elemental fragment, which is 
projected on the yOx ′′′′  plane as the 
{ ydyyyxdxxx ′′+′′<′′≤′′′′+′′<′′≤′′ 0000 ,  rectangle.  

The optical path difference ( )zyx ,,∆  can be found 
(see Fig. 1) as:: 
( ) AA rnrnzyx

rrrr
⋅−⋅−=∆ 0,, , (1.1) 

where  

{ }000 cos,sin,0 ϕϕ=n
r

, { }ϕϕ−= cos,sin,0n
r

,

{ }zyxrA ,,=
r

; (1.2) 
i.e.: 
( ) )cos(cos)sin(sin,, 00 ϕ+ϕ−ϕ−ϕ−=∆ zyzyx .  (1.3) 

Let us consider the conversions of coordinates: 

⎪
⎩

⎪
⎨

⎧

ψβ′+ψβ′+ψ′−=
β′−β′=

ψβ′+ψβ′+ψ′=

;coscoscossinsin
,sincos

,sincossinsincos

zyxz
zyy

zyxx
 (2.1) 

⎪
⎩

⎪
⎨

⎧

′′=′
γ′′+γ′′=′
γ′′−γ′′=′

;
,cossin
,sincos

zz
yxy
yxx

 (2.2) 

then we substitute (2.2) into (2.1) and get: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

ψβ′′+ψβγ+ψγ′′+
+ψβγ+ψγ−′′=
β′′−βγ′′+βγ′′=

ψβ′+ψβγ+ψγ−′′+
+ψβγ+ψγ′′=

.coscos)cossincossin(sin
)cossinsinsincos(

,sincoscoscossin
,sincos)sinsincoscossin(

)sinsinsincos(cos

zy
xz

zyxy
zy

xx

 

(2.3) 

 Now, after putting (2.3) into (1.3), the expression 
( )zyx ′′′′′′∆ ,,  we are looking for can be found as: 

( ) zyxzyxk ′′µ+′′ν+′′η=′′′′′′∆ ,,            (3.1) 

where λπ= /2k  is the wave number, and the following 
designations are introduced: 

( ){
( )( )}

( ){
( )( )}

( ) ( ){ }⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

ϕ+ϕψβ−ϕ−ϕβ=µ

ϕ+ϕψβγ+ψγ−

−ϕ−ϕβγ−=ν

ϕ+ϕψβγ−ψγ+

+ϕ−ϕβγ−=η

.coscoscoscossinsinsin

,coscoscossincossinsin

sinsincoscos

,coscoscossinsinsincos

sinsincossin

00

0

0

0

0

k

k

k

 (3.2) 
Next, the ndf  can be found (see Fig. 1 and Fig. 3,b) 

as: 
ldxdnndf gn ′′′′⋅=

rr
0   (4.1) 

where 

03020 cossin ϕ+ϕ= iin
rrr

 and  
z
F

ci
y
F

cin nn
g ′′∂

∂″+
′′∂

∂″= 32
rrr   

 (4.2) 
are, respectively, the normals to the back side of the 
front of the incident wave and to the front side of the 
elemental area of the EDG’s surface (the Oxyz  and 

zyxO ′′′′′′  CCS basis vectors are denoted as { }321 ,, iii
rrr

 and 

{ }″″″
321 ,, iii
rrr

, respectively),, 

2
1

22 −

⎟
⎠

⎞
⎜
⎝

⎛
′′∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′′∂

∂
=

z
F

y
Fc nn , 

yd
z
F

z
F

y
F

ydxdld nnn ′′
′′∂

∂
⎟
⎠

⎞
⎜
⎝

⎛
′′∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′′∂

∂
=′′+′′=′′

−122
22 . 

(4.3) 
According to (2.3), we have: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

ψβ=″⋅

ψβγ+ψγ=″⋅

β−=″⋅

βγ=″⋅

,coscos

,cossincossinsin

,sin

,coscos

33

23

32

22

ii

ii

ii

ii

rr

rr

rr

rr

  (4.4) 

so we get the relation: 

[

( ) ]

[ ] ,coscoscossinsin

coscossincossinsin

sincoscos

00

1

0

0

1

ydxd
z
F

z
F

ydxd
y
F

z
F

df

nn

n

n
n

′′′′
′′∂

∂
ϕψβ+ϕβ−

′′∂
∂

+

+′′′′
′′∂

∂
ϕψβγ+ψγ+

+ϕβγ
′′∂

∂
=

−

−

(4.5) 
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by putting consecutively (4.2), (4.3), and (4.4) into (4.1), 
or 

( ) ydxdzygdfn ′′′′′′′′= , , (4.6) 
where 

( )

( )
⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

ϕψβ+ϕβ−=

ϕψβγ+ψγ+

+ϕβγ=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′′∂

∂
+

′′∂
∂

′′∂
∂

=′′′′
−

.coscoscossinsin

,coscossincossinsin

sincoscos

,,

002

0

01

21

1

c

c
z
F

c
y
F

c
z
F

zyg nnn

  (4.7) 

According to the Huygens--Fresnel law in its 
quantitative formulation, any of the components of the 
electrical or magnetic field strength vectors E

r
 and H

r
 

at the point P  is defined by the following expression: 

{ }∫
σ

ρ
π

= n
S

p dfikR
Ri

uk
u *

* exp
2

, (5.1) 

where λπ= /2k  – wave number, Su  is the 

corresponding component of E
r

 or H
r

 vectors at the point 
S  that is harmonically changing with the time t  with the 
amplitude a  and the angular frequency ω  which can be 
written down in the complex-valued form as: 

{ }tiauS ω−⋅= exp , (5.2) 

where i  is the imaginary unity, ndf  is the perpendicular 
to at elemental area of the incident beam which is cut by 
the falling bundle of rays that diffract on the EDG’s 
surface elemental fragment, ρ  is the reflectance of this 

area, *R  is the distance from the area ndf  to the point 
P , σ  is the surface of the EDG’s fragment, the result of 
the diffraction on which is calculated. 

Let us assume that the source S  and the observer 
P  are sufficiently far from the point O  as compared 
with the EDG’s sizes to consider both the incident and 
diffracting waves as plane waves. Then we can write 
down: 

RRR ≈∆+=* ,  (5.3) 
where R  is the length of the segment OP , and ∆  is the 
optical path difference between the beams that falls 
down and diffracts, respectively, as components of the 
given incident and diffracting waves on the area ndf  and 
at the point O . By taking (5.3) into account, expression 
(5.1) acquires the following form: 

{ } { }∫ ∆=
σ

ρ
π n

S
p dfik

Ri
ikRuk

u exp
2
exp

.  (5.4) 

Let us put (3.1) and (4.6) into (5.4) and select the 
n -th EDG’s stroke [the region that is set by the 
expressions ( ){ dnydnLxL ⋅+<′′≤⋅<′′≤− 1,  (see 
Fig. 3,a)] as a fragment, the result of the diffraction on 
which is calculated: 

{ }

{ } ( ) ( )
( )

,,,exp

exp

1

1

∫

∫
+

−

′′′′′′′′′′ρ′′µ+′′ν×

×′′′′η=

dn

nd

L

L
p

ydzygzyziyi

xdxiAu

 (5.5) 

where 

{ }
Ri

ikRuk
A S

π2

exp
1 = .  (5.6) 

The first integral in expression (5.5) can be 
calculated easily, but the second one cannot be found 
analytically except for the case of certain simplified 
shapes of the stroke profile ( ) 0, =′′′′ zyFn  and only for a 
certain simple function of the reflectance distribution 
( )zy ′′′′ρ , . We will return to this issue in what follow and 

now just rewrite expression (5.5) without any loss of 
generality as: 

{ } ( ) ( )
( )

.,,exp

sin2

1

1

∫
+

′′′′′′′′′′ρ′′µ+′′ν×

×
η
η

=

dn

nd

p

ydzygzyziyi

L
LLAu

  (5.7) 

This relation describes the result of the diffraction on the 
one stroke of EDG. We are able now to draw certain 
conclusions already on this stage of the analysis of the 
diffraction on EDG. Indeed, since the remaining integral 
is a function of the stroke number n , so it is responsible 
for the transverse (across the stroke line – parallel to the 

yO ′′  axis) inphasity of the diffraction on the stroke 
elements and for the reciprocal interaction of the strokes, 
i.e. for the selection of the diffracted light by 

wavelength. And vice versa, the 
L

L
η
ηsin multiplier don’t 

depend on n , and therefore it is the same for any stroke 
of EDG; hence it determines the longitudinal (along the 
stroke line – parallel to the xO ′′  axis) inphasity of the 
diffraction on the stroke elements. In other words, it 
defines the selection of the diffracted light by the 
Horizontal Parallax (HP) angle ψ  under the other 
constant Conditions of Lighting (of EDG by the white 
light) and Observation of the Diffracting Light 
(CLODL). The graph of the dependence of the diffracted 
light amplitude on the HP angle ψ  or the indicatrix of 
the diffraction by the HP angle ψ  the in normalized 
coordinates ( Lη  as an analog of ψ ) – the function 

( )L
L

L
η

η
ηsin  – is  depicted in Fig. 4. This function, i.e. 

the electromagnetic field amplitude, attains the 
maximum under condition 0=η , i.e. [see expression 
(3.2)] under the condition: 
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Fig. 4. Indicatrix of diffraction by the HP angle ψ , in 
normalized coordinates Lη  
 
 

( )
( )( ) ,0coscoscossinsinsincos

sinsincossin

0

0

=ϕ+ϕψβγ−ψγ+

+ϕ−ϕβγ−
 

(6.1) 
or: 

( )
( ) ( )00

0
coscoscossinsinsincos

coscossin
ϕ+ϕψβ+ϕ−ϕβ

ϕ+ϕψ
=γtg . 

(6.2) 

Expression (6.2) allows us to define the slope angle γ  of 
the stroke of EDG, the maximum of the diffraction on 
which is observed at a given value of the HP angle ψ  
under the other constant CLODL. Together with the 
expression   

α−γ=χ ,  (6.3) 

where α  is the angle of turning of the stereogram 
around its own normal (to the front-face area) in the 
right-handed direction, relation (6.2) fixes, under the 
other constant CLODL, the dependence ( )ψχ  between 
the division of viewing angle discrete values 

Nnn ...,,2,1, =ψ , and the corresponding stroke slope 
angles Nnn ...,,2,1, =χ , of the EDGs set, which form 
stereogram’s elemental unit that represents one pixel of 
each angle shot. Thus, in the general case, the 
dependence ( )ψχ  is described by the expression 

( )
( ) ( ) ,

coscoscossinsinsincos
coscossin

arctg
00

0

⎭
⎬
⎫

⎩
⎨
⎧

ϕ+ϕψβ+ϕ−ϕβ
ϕ+ϕψ

+

+α−=χ

 (6.4) 

which will be used in the stereogram’s calculation. 
As the stereogram channel, we call the discrete 

value of viewing at a HP angle. Let us introduce the 
parameter 1, ±nns  to describe the splitting quality of 
adjacent [ n -th and ( )1±n -th] channels, that is the 
degree of admixing of the result of diffraction on EDG, 
which represents the adjacent ( )1±n -th channel, to the 
result of diffraction on EDG, which represents the given 
n -th channel under the observation of the diffracting 

light at the HP angle value ψn that corresponds to the 
diffraction maximum for the given n-th channel: 

( ) ( )
π
ψγη

π
ψχη LL

s nnnn
nn

,, 11
1,

±±
± == .            (7.1) 

Taking (3.2) and (6.2) into account, we rewrite 
(7.1) as: 

( )

( )
( ).coscos

cossinsinsincos

sinsincossin

0

11

011,

ϕ+ϕ×

×ψβγ−ψγ
π

+

+ϕ−ϕβγ
π

−=

±±

±±

nnnn

nnn

kL

kLs

 (7.2) 

If we have the discrete values Nnn ...,,2,1, =ψ , of 
viewing at a HP angle and the corresponding EDGs’ 
stroke slope angles Nnn ...,,2,1, =χ , or 

Nnn ...,,2,1, =γ , [in compliance with (6.3)], then we 
can calculate the splitting quality of adjacent channels 
values Nns nn ...,,2,1,1, =± .  

If the 1, ±nns  parameter takes the integer values, 
then it coincides by its physical meaning with the 
number of the minimum (by the HP angle ψ ) of the 
diffraction on the grating of the adjacent ( )1±n -th 
channel (this minimum is observed at the HP angle ψ  
that corresponds to the maximum of the diffraction on 
the grating of the given n -th channel). If values of the 

1, ±nns  parameter are semiinteger, i.e. 
,...2,1,5.01, =+=± mms nn , then the 5.01, −±nns  

parameter by its physical meaning is the number of the 
maximum (by the HP angle ψ ) of the diffraction on the 
grating of the adjacent ( )1±n -th channel (this maximum 
is observed at the value of HP angle ψ  that corresponds 
to the maximum of the diffraction on the grating of the 
given n -th channel). Generally, the parameter 1, ±nns  
indicates the relative disposition of zero diffraction 
maxima (by the HP angle ψ ) of adjacent channels; the 
more this parameter, the better the splitting of channels 
is observed, i.e. the less the merging of images of 
adjacent channels occurs. 

After the parameters that characterize the EDG’s 
selectivity on the HP angle ψ  are defined, we may pass 
to the calculation of the diffraction on the whole EDG. 
For that, we have to compute the integral in expression 
(5.7). As was noticed above, this integral can be 
determined only for particular shapes of the stroke 
profile ( ) 0, =′′′′ zyFn as well as for particular reflectance 
distributions ( )zy ′′′′ρ , . Let us consider the rectangular 
stroke with the reflecting (with reflectance 0ρ ) 
horizontal segments and with completely absorbent 
vertical segments (Fig. 5). Vertical segments don’t 
contrib contribute to the integral in expression (5.7), 
inasmuch as ( ) 0, =′′′′ρ zy  for them. Horizontal segments 
are given by the relation 
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( ) ( )( ) Zmmd ∈
ϕ+ϕψβγ+ψγ−ϕ−ϕβγ−

λ
= ,

coscoscossincossinsinsinsincoscos 00
 (9.2) 

 
Fig. 5. Reductive presentation of the EDG’s stroke 
 
 

( ) 0, 2,1 =−′′=′′′′ hzzyFn .   (8.1) 
So, according to (4.7), we have, for horizontal segments, 
( ) 002 coscoscossinsin, ϕψβ+ϕβ−==′′′′ czyg . (8.2) 

In this case, expression (5.7) which describes the 
diffraction on one stroke is transformed into the relation 

{ }dnicA
L

LLAu p ν
η
η

= expsin2 221 , (8.3) 

where 

( ) ( )( ){
( ) ( ) ( )( )}bidihi

bihi
i

A

ν−νµ+

+−νµ
ν
ρ

=

expexpexp

1expexp

1

2
0

2  (8.4) 

is a constant that depends on the stroke parameters. 
Adding the contributions of n  strokes of EDG with 
regard for: 

{ } { }
{ }

( ) ( ) ,
2/sin
2/sin

2
1exp

1exp
1expexp

1

0

d
dNNdi

di
dNidni

N

n

ν
ν

⎭
⎬
⎫

⎩
⎨
⎧ −ν

=

=
−ν
−ν

=ν∑
−

=  (8.5) 

we get the electromagnetic field amplitude of a wave 
diffracting on EDG at the point P : 

( )
2/sin
2/sinsin2 2321 d

dNc
L

LAALAu p ν
ν

η
η

= , (8.6) 

where the following designation is introduced: 
( )

⎭
⎬
⎫

⎩
⎨
⎧ −ν

=
2

1exp3
NdiA . (8.7) 

The term ( )
2/sin
2/sin

d
dN
ν
ν  from expression (8.6) is 

responsible for the selection of the diffracted light by the 
wavelength and tops under the following condition: 

Zmmd
∈π=

ν ,
2

. (9.1) 

Putting ν  from (3.2), we can get the following 
condition for the m -th diffraction maximum in the 
direction transverse to the stroke line: 

 Together with condition (6.2) [or (6.4)] of the 
diffraction maximum in the direction longitudinal for a 
stroke line, expression (9.2) allows us to determine, for 
the assigned CLODL { }nψβαϕϕ ,,,,0  and for the color 
of the n -th angle shot pixel or the wavelength λ  of the 
light diffracting on the EDG which represents this pixel, 
all the parameters of EDG that must represent the pixel 
of the n -th angle shot, which is observed at the certain 
discrete value of the HP viewing angle nψ : the stroke 
slope angle nχ  (the same for all the pixels of the angle 
shot) and the period ncd  that depends on the perspective 
( nψ ) and the pixel color (λ ) (index c  corresponds to 
color). On the contrary, expression (9.2) allows us to 
define the wavelength λ  of the light diffracting under 
any CLODL { }ψβαϕϕ ,,,,0  on the certain EDG with the 
parameters { }d,χ . Expression (8.6) under condition 
(9.1) becomes 

[ ]
L

LAu Ep η
η

ϕψβ+ϕβ−=
sincoscoscossinsin 00 , 

 (10.1) 
where  

3212 AALNAAE ±= . (10.2) 

Intensity I  of the light diffracting under the assigned 
CLODL { }ψβαϕϕ ,,,,0  on the given EDG { }d,χ  at point 
P  can be defined after expression (10.1) is squared: 

[ ] .sincoscoscossinsin
2

2
00

2
⎟⎟
⎠

⎞
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⎝

⎛
η
η

ϕψβ+ϕβ−=
L

LAI E

 (10.3) 

We now can sum up the well-handled theoretical 
discussion of the diffraction on EDG. First, expressions 
(6.4) and (9.2), which allow one to define the stroke 
slope angle nχ  and the period ncd  for the given 
discrete value of HP angle nψ  and fixed CLODL 
{ }βαϕϕ ,,,0 , were got. Second, the wavelength λ  and 
the intensity I  of the light diffracting on a given EDG 
with the parameters { }d,χ  can be defined for any 
CLODL { }ψβαϕϕ ,,,,0  from expressions (9.2) and 
(10.3). This opportunity allows us to develop the 
software option of the macrovisualization that models 
the stereogram behavior or, in other words, represents 
the result of the diffraction on a stereogram under 
arbitrary conditions of lighting (by white light) and the 
observation of the diffracting light in the form of a 
picture on the display.  
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2.2. Structure of the anigram or the stereogram. 

For the multiplex (such as animated or stereographic) 
images making, the common polygram [1] technology is 
used. The area of polygram’s Elemental Unit (EU) can 
be divided by the topologies of five different types: 
ordinary straight diffractive gratings and achromatic 
straight diffractive gratings, which represent halftone 
images, curvilinear diffractive gratings representing 
discs, lenses, and other peculiar images, non-diffractive 
microstructures and eventually the CGRHs’ topology. 
Every separate topology takes up the adjusted region of 
an intended EU. EU’s separate topology parameters are 
defined by the color of the image corresponding to an 
EU pixel, and the presence of a separate topology in a 
given EU is defined by a mask. Thus, the polygram’s 
structure is determined by the amount and the type of 
involved images with the related encoding images and 
image’s masks, as well as by EU’s masks. EU’s mask 
for all images, except CGRHs, can be of any shape [1]. 
So, since the anigrams and stereograms are the sets of 
angle shots – halftone images, the technology of the 
composite “figure” EU (that is composed from the parts 
of any shape) for their synthesis and the halftone 
encoding by the period, filling, or both parameters at 
once was elaborated, and its software implementation 
was constructed. Figure 6,a displays the topology of the 
separate EU of a stereogram (anigram). Evidently, it 
consists of subregions of an arbitrary adjusted shape. 
Each subregion of the certain EU represents the certain 
pixel of each angle shot, i.e. the number of subregions is 
equal to the amount of stereogram (anigram) channels N; 
N = 16 for the given example. The piece of continuous 
anigram’s topology is depicted in Fig. 6,b. Each 
subregion of the certain EU is numbered according to 
the number of the angle shot representing it. The shapes 
of the corresponding subregions are the same for any EU 
of the given stereogram (anigram) (or for any image 
pixel) and don’t depend on encoding parameters. The 
EU depicted in Fig. 6 is reiterated over mkm0.50=ps  
in the horizontal and vertical directions. This 
corresponds to the same pixel size, mkm0.50=ps , i.e. 
the resolution of 508 dpi of the separate angle shot of a 
stereogram (or anigram). The angle shots of stereograms 
are made over the angle distance ∆ψ; in other words, the 
angle distance between the adjacent discrete values 

Nnn ...,,2,1, =ψ  of viewing on a HP angle is equal to 
ψ∆ . The determination of the optimal ratios of the basic 

stereogram’s parameters as the resolution (or pixel size 
ps), the number of channels N, and the angle distance  
∆ψ is carried out in Section 3. It is necessary to remark 
that the halftone encoding consists in the establishment 
of the accordance between the brightness 

( )255,...,1,0=grgr  of a given color channel of the 
given image and the parameters such as the period, the 
filling of the intended subregion, achromaticity, and so 
on of the Diffraction Grating (DG) that occupies the 
corresponding EU’s subregion.  

 
a. single EU 

 
b. EU surrounded by others EUs; EU’ numbered subregions 

Fig. 6. Structure of anigram’s topology 

 

3. Practical results 

3.1. Searching for the appropriate synthesis parameters. 

Such parameters as the EU’s size, or the pixel size ps , 
and the number of channels N  define the area of the 
EU’s separate subregion S  under the division of EU 
into subregions equal by area: 

N
psS

2
= .  (11.1) 

The less the subregion area S , the weaker the 
selectivity on the HP angle of the Diffraction Grating 
(DG) that fills this subregion (or its part). Let us 
approximately consider that the DG, which fills a 
subregion, is equivalent to the square EDG of the same 
area. The dimension L  of such corresponding EDG can 
be found as: 

SL
2
1

= .  (11.2) 

By taking (11.1), (11.2), and (6.2) into account, 
expression (7.2) under the condition 0=β  can be 
rewritten as: 

( ) ,
2
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where  

nn ψ−ψ=ψ∆ ±1 .                            (11.4) 

So, according to (11.3), the separation quality 
1, ±nns  of the adjacent n -th and ( )1±n -th channels is 

proportional to ps , inversely proportional to N⋅λ , 
and approximately proportional to ψ∆ . The parameter 

1, ±nns  is the appointing at the synthesis of stereograms 
(or anigrams). It must be sufficiently large for images in 
separate channels (angle shots) to be perceived 
separately, without merging, and, at the same time, 
sufficiently small for the angle shot to pass and be 
changed without jumping by another angle shot, i.e. not 
to disappear before the adjacent angle shot appears. The 
optimal values of the parameter 1, ±nns  have not defined 
yet, but the summarizing of the executed investigations 
allows us to suppose that it must be within the range 

5.15.0 1, << ±nns . It is hard to point out the optimal 
value more accurately, because it can depend on the 
geometry of stereogram’s 3D scene or on parameters of 
a sequence of anigram’s images, the encoding 
parameters, and so on. The detailed considerations for 
the accurate determination of optimal values of the 
parameter 1, ±nns  is planned in the nearest future. 

Let us illustrate the behavior of the parameter 
1, ±nns  by the following stereogram test recording. It 

consisted of nine similar cells. The parameters ps  and 
N  were mkm0.50=ps  and 16=N  for any cell. The 
3D scene of one cell was composed from two planes 
parallel to the hologram plane (Fig. 7). In the upper 
plane, the set of blue ( nm436=λ ) rectangles with the 
side from one to ten pixels was placed, and the set of the 
yellow ( nm589=λ ) texts with the line width from one 
to five pixels was arranged in the lower plane. For each 
of three values of ψ∆ , ooo 3,2,1 , we recorded three 
cells with different values of the location depth of the 
defined planes: respectively, mm4,2,1  for the upper 
plane and mm8,4,2  for the lower one. The values of 
the parameter 1, ±nns  are presented in Fig. 8. 

 

 
 
Fig. 7. The upper and lower planes in the cell of the test 
recording 

 
Fig. 8. Values of the parameter 1, ±nns  for the different ∆ψ. 

 
 
The analysis of test results shows that only the cells 

in the left column ( o1=∆ψ , ( )9.0,8.01, ∈±nns  ) work 
clearly for the rectangles. For other columns, the 
unpleasant jumping of the brightness with a horizontal 
viewing angle change is observed. The stereograms of 
the texts work clearly for the entire left column 
( o1=∆ψ , ( )65.0,6.01, ∈±nns  ) and for depth values up 

to mm4  including the middle column ( o2=∆ψ , 
( )3.1,0.11, ∈±nns ). For the larger depths with a change 

of the viewing angle, the image sequence itself makes 
large jumps between the adjacent angle shots, and the 
illusion of the third dimension disappears. In such a 
case, it isn’t the effect of the parameter 1, ±nns . The range 
of admissible values of the depth depends on ψ∆  and 
on image lines width. The appearance of the image 
sequence allows us to estimate the depths of the 
locations of objects admissible or no before the 
synthesis. The main result of this test recording is that 
the range of admissible values of the parameter 1, ±nns  
was ascertained. The best results in this test were 
achieved for the range of ( )3.1,6.01, ∈±nns . 

A good secondary result was obtained: the 
possibility of achieving the resolution dpi508  for the 
stereographic images was confirmed. Indeed, the texts 
with the line width of one pixel ( mkm50 ) is discerned 
completely well. 

As concerns the investigation for finding the 
optimal parameters of the halftone images’ encoding, it 
shows that the encoding of a halftone by the period is 
better than the encoding by other separate DG’s 
parameter. The best results were observed if the period 
alters from the black ( 0=gr , respectively bpdd = ) to 

the white point ( 255=gr , wpdd = ) with the ratio 

bpwp dd /  which lies in the range 0.2...4.1 . The complex 
mixed encoding also deserves attention. 

We also note that, for hatching images, it’s 
expedient to mark out the background colour and to 
leave the areas filled in a background color to be empty. 
This means that some subregions of EU would be empty, 
and the area of the OSD wouldn’t be completely filled. 
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So, an algorithm of the flexible linking of the 
stereogram’s (or anigram’s) channel to the EU’s 
subregion was developed. This algorithm implies the 
replacement, in a given EU (that corresponds to the 
image pixel), of the channels with this pixel of a 
background color by the channels with this pixel of a 
foreground color. The results obtained for the tough and 
the flexible linkings of the channel to the subregion of 
the EU were compared, and it was observed that the 
flexible filling can give a little gain in the diffraction 
efficiency. 

3.2. Examples of animated and stereographic images.  

The opportunities of the presented technology is 
illustrated by spectacular demonstrational OSDs made 
by PolygramTM technology: “Galaxy” and “Nature of 
Optronics” which comprise, as a part, the animated 
sequences of fractal images and the random abstract 
background pattern with two blossoming out roses, 
respectively. They are shown in Figs. 9 and 10. 

 

 
a) general view 

 
b) some images from sequence 

 
c) macrovisualization results 

 
Fig. 9. PolygramTM “GALAXY” with animated fractal image 

 
a) general view 

 
b) macrovisualization results 

 
Fig. 10. PolygramTM “Nature of Optronics” with animated 
image of blossoming out roses 
 

4. Conclusions 

In the present paper, the theory and the practice of 
stereographic and animated rainbow diffractive images 
making have been expounded. So, the basic parameters 
essential for the multiplex images making are 
determined, and the examples of such images are given. 
But some items that can be improved have still 
remained.   
So, it is necessary to consider the diffraction on the 
reflective phase EDG placed not only in vacuum but also 
under a thin film or layer. The rules for finding the 
optimal values of the adjacent channels separation 
quality (parameter 1, ±nns ) can be defined more exactly. 
Moreover, the influence of the stereogram’s scene space 
geometry or the parameters of anigram’s images 
sequence on the optimal angle distance between them 
( ψ∆ ) needs to be explored, and the range of the 
admissible values of these parameters must be 
determined. The encoding methods aren’t explored 
exhaustively. 
But, nevertheless, the developed technology has already 
suited perfectly for making spectacular and sufficiently 
reliable multiplex images. The substantial development 
of the presented technology promises to bring up the 
exact precepts how to achieve the maximum visual 
effect and to make these images especially vivid and 
unusually impressive. 
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