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Abstract. The DG MOSFET is one of the most promising candidates for further CMOS 
scaling beyond the year of 2010. It will be scaled down to various degrees upon a wide 
range of system/circuit requirements (such as high-performance, low standby power and 
low operating power). The key electrical parameter of the DG MOSFET is the 
subthreshold swing (S). In this paper, we present the applicability of the artificial neural 
network for the study of the scaling capability of the undoped DG MOSFET. The latter is 
based on the development of a semi-analytical model of the subthreshold swing (S) using 
the Finite Elements Method (FEM). Our results are discussed in order to draw some 
useful information about the ULSI technology.  
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1. Introduction 

Over the past three decades, the primary driver of the 
exponential improvements in integrated circuit 
performance has been the scaling of transistor 
dimensions. The inherent benefits of MOSFET scaling 
are the speed improvement and energy reduction 
associated with a binary-logic transition. As the 
MOSFET is scaled below the 100 nm technology node 
the advantages of MOSFET scaling are diminished by 
the short channel effects [1]. The double-gate (DG) 
MOSFET shown in Fig. 1a has been identified in the 
International Technology Roadmap for Semiconductors 
(ITRS) as the most promising device structure. It enables 
further CMOS scaling beyond the 65 nm technology 
node (with 25 nm physical gate length). Moreover, it is 
known for its higher drive current, improved 
subthreshold slope, improved short channel effect 
control and potential circuit design flexibility [1-3]. The 
key electrical parameter that indicates the impact of 
short-channel effects on a MOSFET is the subthreshold 
swing (S). This is defined as the required change in the 
gate voltage that results in an order-of-magnitude change 
in the subthreshold drain current. The previous (S) 
model by B. Agrawal [4] was developed assuming the 
subthreshold current flows at the Si/SiO2 surfaces as in 
bulk devices. However, Y. Tosaka et al. [5] proposed the 
S model based on simulations that the punch through 

current dominantly flows at the SOI centre, but no 
explanations were provided. On the other hand, the 
modeling of transistor DG MOSFET is currently made 
in an analytical way [6]. This modeling requires several 
simplifying assumptions, generally necessary to lead to 
analytical expressions in order to study the various 
characteristics of the transistor. The 2D semi-analytical 
study, which constitutes the essence of our work, does 
not use any simplifying assumption. In our case, one 
solves the two-dimensional (2D) Poisson-Boltzmann 
nonlinear equation in the channel by using the finite 
element method and develops a semi-analytical model 
for (S) based on polynomial interpolation. Assuming a 
concept of effective conducting path [6], the model 
explains the dependence of S according to the doping of 
the channel and the effect of the various parameters.  

In this paper, we present the applicability of neural 
networks for the study of the scaling capability of the 
undoped DG MOSFET. The database used for the 
optimization of the neural network is built as based on a 
semi-analytical model of the subthreshold swing (S) 
developed using the Finite Elements Method (FEM).  

2. Modelling techniques  

2.1. Finite elements formulation 

The silicon film is assumed to be fully depleted (FD) for 
the values of NA and tSi of interest Fig. 1b. Under this FD 
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condition, the short channel (S) model of the DG 
MOSFET under various modes of operation (symmetric 
and asymmetric) is to be developed being based on the 
2D analysis of the electrostatics in the channel by 
solving the nonlinear Poisson-Boltzmann equation of the 
following form: 

)(
Si

nNq
A +

ε
=∆Ψ ,                         (1a) 

where the electrostatic potential Ψ is referenced to the 
Fermi level. The free electron concentration n follows 
the classic Boltzmann distribution as  

( )Fφ−Ψβ= enn i , (1b) 

where φF is the difference between the Fermi level and 
the electron quasi-Fermi level to account for the non-
equilibrium condition.   

The boundary conditions for Ψ are found by 
satisfying the continuity of both the potential and the 
normal component of the electric displacement at the 
Si / SiO2 interfaces; and continuity of the potential at the 
source/drain sides: 
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( ) ibiVy ,,0 =Ψ , (4) 

( ) DSibi VVyL +=Ψ ,, , (5) 

where Vbi,i is the junction voltage between the 
source/drain and intrinsic silicon, 

( ) ( )iSDibi nNqkTV /ln/ /, = , ND/S is the source/drain 
doping concentration, and VDS is the drain-to-source 
voltage. The effective voltages at the front and bottom 
gates, VF,eff and VB,eff, are introduced to simplify 
notations and are defined as follows: 

( ),,eff, iMFFGSF VV Φ−Φ−=   

( ),,eff, iMBBGSB VV Φ−Φ−=  (6)

 where Φi is the work function of intrinsic silicon. When 
VF,eff = VB,eff, the electric field in the vertical (y) direction 
is symmetric y = tSi / 2, which yields a symmetric DG 
MOSFET.   

In the asymmetric DG mode of operation, two gate 
oxide thicknesses are different ( BF tt ,ox,ox ≠ ), they 
change in phase (difference between the gate oxide 
thicknesses remains constant). As in the case of the 
symmetric mode, the boundary conditions for Ψ are 
obtained as follows: 
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( ) DSibi VVyL +=Ψ ,, .   (10)

 Thus, this is a two-dimensional nonlinear problem 
of the second order defined inside the channel by the 
equation (1a) and the boundary conditions at the Si/SiO2 
interfaces (Cauchy condition) and the continuity of the 
potential at the source/drain sides (Dirichlet condition). 

The integral for Finite Elements formalism is: 

∫ ∫ =⎥
⎦

⎤
⎢
⎣

⎡
ε

+
⋅−

∂
Ψ∂

∂
∂

+
∂
Ψ∂

∂
∂

−=Ψ 0
)(

)(
Si

dA
nNq

w
yy

w
xx

wR A .      

 (11) 
This leads to the matrix system: 

[ ] [ ] [ ] 0)()]([ =Ψ−Ψ⋅=Ψ FKR ,    (12a) 
where w represents the weight function, R[Ψ] is the 
residual vector, [K] is the stiffness matrix, [Ψ] is the 
vector of the unknown potentials and [F] represents the 
vector of the field sources, the elementary terms are 
calculated by: 
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The nonlinear system (12a) is solved by the 
Newton-Raphson method [7] assuming the Jacobian 
matrix [J] terms as: 
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Fig. 1. (a) DG MOSFET structure. (b) DG MOSFET with a 
coordinate system. 
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Expression (13) can be written as: 
][][][ FKJ ∆+= . (14) 

The elementary terms are calculated by: 

j
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The mesh element used in our case is triangular 
with three nodes.  

2.2. Semi-analytical (S) model 

Subthreshold swing, defined as the change of the gate 
voltage needed for an order-of-magnitude change in the 
subthreshold drain current, is expressed as: 

D
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Assuming is made that the drain current (ID) is 
proportional to the total amount of free carriers at the 
virtual cathode, where the channel potential reaches its 
minimum Ψmin(y) [6]. This latter allows finding the 
virtual cathode position (xmin) along the channel length 
and its effect on the total amount of free carriers at the 
virtual cathode in function of electrical and physical 
parameters (doping, drain-source and gate-source 
voltages,…) of DG MOSFET as it is illustrated in Fig. 2, 
where the cathode position value xmin can be found 

numerically through 0),(
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Expression (16) can be transformed [6] to: 
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Fig. 2. Virtual cathode position vs the channel length for 
different drain-source and gate-source potentials (from VGS = 0 
to VGS = 0.4 V). 
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Fig. 3. Variation of the minimum channel potential Ψmin(y) for 
various gate voltages (VGS): symmetric (a) and asymmetric (b) 
DG MOSFETs.  

 
Therefore, the key to development of an (S) model 

is to find out the minimum channel potential Ψmin(y) and 
its dependence on the gate voltage. The calculation of 
the channel potential by the finite elements method 
enables us to determine the variation of the minimum 
potential Ψmin(y), where the minimum channel potential 
Ψmin(y) can be found through Ψmin(y) = Ψ(xmin, y). 

Fig. 3 represents the variations of the minimum 
channel potential Ψmin(y) for various gate voltages (VGS) 
under various modes of operation (symmetric and 
asymmetric). The variation of the minimum potential 
Ψmin(y) according to the gate voltage (VGS) and channel 
doping concentration (NA) can be given by: 

Ψmin(y,VGS, NA) = a(VGS, NA)y2 + b(VGS, NA)y + 
+ c(VGS, NA),    (18) 

where a(VGS, NA), b(VGS, NA), and c(VGS, NA) are 
parameters given according to the gate voltage (VGS) and 
channel doping concentration (NA). The latter functions 
can be represented by polynomial approximations: 
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Table 1. Values of the coefficients of the minimum electrostatic potential function Ψmin for symmetric DG MOSFET.  
NA 5·1014 1015 1016 1017     5·1017 1018    5·1018 

)( GSi Va  a1  = 56.43·10-5 

a0 = 5.54·10-5 
a1=61.14·10-5 

a0=14.81·10-5 
a1 = 0.0006 

a0 = –0.0014 
a1 = 0.0018 

a0 = –0.0192
a1 = 0.0004 

a0 = –0.0817 
a1 = 0.0005 

a0 = –0.1635 
a1 = 0.0007 

a0 = –0.7386 
)( GSi Vb  b1 = –0.0113 

b0 = 0.0011 
b1 = –0.0122 
b0 = 0.0030 

b1 = –0.0118 
b0 = 0.0289 

b1 = –0.0366
b0 = 0.3850 

b1 = –0.0084 
b0 = 1.6344 

b1 = –0.0094 
b0 = 3.2702 

b1 = –0.0132 
b0 = 14.7729

)( GSi Vc  c1 = 0.1390 
c0 = 0.7346 

c1 = 0.1390 
c0 = 0.9230 

c1 = 0.1390 
c0 = 4.3131 

c1= 0.2018 
c0 = 38.0109

c1 = 0.1340 
c0 = 188.9474

c1 = 0.1390 
c0 = 377.3569 

c1 = 0.2000 
c0 = 1884.5 

 
Table 2. Values of the coefficients of the minimum electrostatic potential function Ψmin for asymmetric DG MOSFET.  

NA 5·1014 1015 1016 1017    5·1017 1018 5·1018 

)( GSi Va  a1 = 18.53·10-5 

a0 = –3.74·10-5 
a1 = 21.83·10-5 

a0 = –4.4·10-5 
a1 = 71.69·10-5 

a0 = –6·10-4 
a1 = 0.0005 

a0 = –0.0058 
a1 = 0.0006 

a0 = –0.0288 
a1 = 0.0005 

a0 = –0.0576 
a1 = –0.0010 

a0 = –0.2867 

)( GSi Vb  b1 = –0.0035 
b0 = 0.0007 

b1= –0.0042 
b0 = 0.0008 

b1 = –0.0134 
b0 = 0.0068 

b1 = –0.009 
b0 = 0.0625 

b1 = –0.0114 
b0 = 0.3071 

b1 = –0.0091 
b0 = 0.6133 

b1 = –0.0288 
b0 = 3.0416 

)( GSi Vc  c1 = 0.1313 
c0 = 0.7361 

c1 = 0.1349 
c0 = 0.9259 

c1 = 0.1613 
c0 = 4.3986 

c1 = 0.1485 
c0 = 39.1643 

c1 = 0.1549 
c0 = 193.6484

c1 = 0.1485 
c0 = 386.759 

c1= 0.0000 
c0 = 1931.6 

 

The parameters ai , bi, and ci are coefficients given 
for each mode of operation (symmetric and asymmetric). 
These parameters are summarized in Tables 1 and 2. 

Plugging (18) into (17) yields to a semi-analytical 
(S) model. To further simplify this model, two cases 
need to be studied: 1) symmetric DG mode, 2) 
asymmetric DG mode. 

2.3. Neural estimator 

The model based on artificial neural network [8] 
assumes that input and output patterns of the given 
problem are related by a set of neurons organized in 
hidden layers. Each neuron called processing unit 
forward the input values to the output pattern using 
simple mathematical rules. Neuron input is related to 
other neuron outputs using the following equation 
(Einstein notation)  

 ijijklkl OwI = ,  (20) 

where Ikl is the input of neuron l from layer k, Oij is the 
output of neuron j from layer i, wijkl is the weight relating 
the neuron j and neuron l. This weight parameter 
represents the strength of the connection between the 
neurons.  

The input of each neuron is related to its output 
according to [9] 

( )ijIij
e

O −+
=

1
1 .  (21) 

This expression states that the neuron transform 
non-linearly the sum of the other neuron outputs. The 
sigmoid function used in this transformation is called a 
transfer function.  

In this study, input parameters are tox1, tox2, tSi, L 
and Sym. Each of these parameters is indexed with one 
neuron. Sym parameter is a classification variable 
(Sym = 1 for symmetric case and Sym = 0 for the 
asymmetric case). The output variable is the 
subthreshold swing (S). Neurons in the network structure 

are connected with variables called weights. These are to 
be optimized in order that the network response 
identifies the correlations between input and output 
variables. This is performed by an optimization process 
using the training and test processes.  

2.4. Neural computation  

Neural computation is performed by the training and test 
processes in which 91 samples submitted to a network 
structure are used to discover the correlations between 
input and output parameters. In the training process, the 
weights are corrected according to the gradient decent 
algorithm [8].  

At the output pattern, the error expression for a 
given iteration level t ′  is 

( )2
2
1 t

r
t
o yyE ′′ −= ,  (22) 

where yr and y are the real and predicted responses, 
respectively. This last expression is called the system 
energy.  

The weight update in the output layer is a function 
of the system energy  

t
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t
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Substituting expression (20) and (22) into (23) 
gives 

( ) ( ) t
mn

t
op

t
r

t
mnop OIfyyE ′′′ ′−=∇ ' , (24) 

where f' is the 1st derivative of the transfer function. 
A similar expression holds for the hidden layers. 

For instance, the gradient energy in the case of the 
second hidden layer is  

( ) ( ) ( ) t
kl

t
mn

t
klmn

t
op

t
r

t
klmn OIfwIfyyE ′′′′′′ ′′−=∇ .  (25) 

The weight update is assumed to depend on the 
magnitude and direction of the energy gradient. In the 
case of the output layer, the weight change is    
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Fig. 4. (a) Residual error for ANN training for different 
structures. (X_Y): X – neuron number in the 1st hidden layer, 
Y – neuron number in the 2nd one. (b) Detailed structure of the 
optimised neural network. 
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This expression enhances the calculation by 
varying the sign and the magnitude of the weight.  

The error at the output layer is back-propagated in 
the network structure based on the former calculation of 
the weight expressions. 

Fig. 4a shows the evolution of the residual error of 
network training for different network structures. It is 
noticed that the highest errors are recorded for small 
structures. The best compromise was identified for the 
structure 4_2 (4 neurons in the first hidden layer and 
2 neurons in the second hidden layer). Fig. 4b details the 
optimized structure.  

3. Results and discussion 

3.1. Symmetric DG MOSFET  

In the symmetric DG mode of operation, two effective 
gate voltages are always equal to each other and change 
simultaneously (VF,eff = VB,eff). Such a mode can be 
realized either by:  

– having two gates made of single material and 
electrically tying them together [10];  

– having different gate materials but keeping a 
constant bias between two gates that compensates the 
work function difference of the gates [11]. 

The semi-analytical model of the subthreshold 
swing (S) that was developed for a DG MOSFET is 
compared with the analytical models of Chen Qiang 
et al. [6] and B. Agrawal [4] (Fig. 5), revealing an 
unusual NA-dependence of S, which is opposite to that 
in bulk devices. Increasing NA does not compromise, 
but improves S in DG MOSFET’s within the full 
depletion range. This dependence can be explained by 
the location of the effective conducting path 
(subthreshold current lines) [6]. For high NA values, the 
dopant induced field is significant (for NA = 2·1018 cm–3 
and tSi = 20 nm) such that the surface potential 
Ψmin(y = 0 and y = tSi) is much greater than the center 
potential Ψ(y = tSi / 2) and the overall conduction is 
highly confined to surfaces. One key physical effect 
neglected in the analysis of this work is the quantum 
effects of both field confinement and spatial 
confinement. In heavily doped channel, field 
confinement in the inversion layer caused by strong 
electric field shifts electron peaks away from surfaces 
(Si/SiO2 interfaces) [6], which constitutes one more 
reason for inaccuracy of our S model for the heavily 
doped channel (Fig. 5). So, our S model is not suitable 
for heavily doped devices. With decreasing NA values, 
a weakened dopant induced field leads to a flatter 
shape of potential profile such that the effective 
conducting path (subthreshold current lines) retreats 
from surfaces into depth, causing weakened gate 
control and a larger S. Finally, at low NA values (for 
NA = 1016 cm–3), the potential profile Ψ(y) is virtually 
determined by the Laplace equation alone. 
Consequently, the effective conducting path no longer 
drifts with NA, resulting in a constant (S) value. 
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Fig. 5. Doping concentration (NA) dependence of S  
(L = 30 nm, tox = 1.5 nm, tSi = 20 nm). 
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Fig. 6. Verification of undoped semi-analytical model (NA = 
1016 cm–3, tox = 1.5 nm and VDS = 0.1 V).The inset compares 
undoped semi-analytical model with Qiang Chen model for 
three different values of the silicon thickness (tSi = 10 nm, 
20 nm, 30 nm and VDS = 0.1 V).  
 

For very short channel (L < 80nm), the results of 
(S) show an exponential evolution with a minimal value 
of (S) equal to 61 mV/dec (Fig. 6). This increase in (S) 
can be caused by the appearance of the tunnel current 
(source/drain) which weakens the control of the channel. 
In Fig. 6, our semi-analytical model is compared to that 
of Chen Qiang et al. [6]. This comparison show a good 
agreement for channels (L > 80 nm) but in the other case 
(L < 80 nm), the results of (S) show a shift compared to 
that of Chen Qiang et al. [6] model. This shift can be 
explained by the strong contribution of the free electron 
concentration in the subthreshold swing modeling. On 
the other hand, the subthreshold swing developed in 
previous works did not show a very good agreement 
with our neural simulations. This is because the location 
of the effective conduction path is not accurately 
modeled for the reason that the free carriers neglected in 
these models.           

3.2. Asymmetric DG MOSFET 

As expected from the concept of the location of the 
effective conducting path (subthreshold current lines), 
asymmetric undoped DG MOSFET shows an improved 
subthreshold swing (S) in comparison with the 
symmetric undoped device since the effective 
conducting path in the asymmetric device tends to be 
close to one of the Si/SiO2 surfaces (Fig. 7). 

3.3. Scaling capability of DG MOSFET 

Scaling capability of the symmetric undoped DG 
MOSFET is further illustrated in Fig. 8a, where the 
minimum channel length versus tSi is projected for S = 
100 mV/dec and 70 mV/dec (tox is assumed to be 
0.8 nm). Clearly, 10 nm undoped DG MOSFETs are 
likely to find their first applications in conditions where 
S = 100 mV/dec is tolerable. The good agreement 
between Chen Qiang et al. [6] results and ours shows 
that scaling capability of DG MOSFET can be studied 
using the neural network approach. 
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Fig.7. Comparison of the symmetric DG MOSFET S model 
with the asymmetric one (NA =1016 cm–3, tox,F = 1.5 nm, tox,B = 
2 nm and VDS = 0.1 V)  
 

Fig. 8b shows the estimated evolution of the 
scaling capability of the asymmetric undoped 
DG MOSFET versus different gate oxide thicknesses. 
This evolution shows the effect of the bottom gate oxide 
thickness (tox,B) on the law of scaling capability of the 
asymmetric undoped DG MOSFET, asymmetric 
undoped DG MOSFET shows an improved scaling 
capability in comparison with the symmetric undoped 
device. Clearly, 10 nm asymmetric undoped DG 
MOSFETs are likely to be used for the condition where 
S = 70 mV/dec is tolerable.  
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Fig. 8. Minimum channel length as a function of the silicon 
thickness for symmetric (tox = 0.8 nm) (a) and asymmetric (b) 
DG MOSFETs. 
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4. Conclusions  

In this work, we showed the applicability of the neural 
net approach to the scaling capability of the undoped DG 
MOSFET problem. This study was based on the study of 
the effect of the channel length, silicon film thickness 
and gate oxide thickness on subthreshold swing. A semi-
analytical model of the subthreshold swing was built as 
based on the resolution of the 2D Poisson-Boltzmann 
nonlinear equation in the channel. The finite element 
method and polynomial interpolation were considered to 
solve the problem. The use of this semi-analytical model 
enabled us to build the required database in order to 
optimize our Artificial Neural Network (ANN) structure. 
We are currently extending this model to include the 
quantum effects (tSi < 5 nm and L < 10 nm). Finally, it is 
noteworthy that ANN technique has the advantage of 
being more robust, and independent of a pre-conceived 
physical model. Hence, ANN could be considered by 
many people as a “black box” in which physics is 
overlooked, but the final analysis of the model itself 
could provide reliable information on the system and 
further understanding of the physics involved. 
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List of symbols 
Semi-analytical model  
K  Boltzmann constant 
n  free electron concentration 
ni  intrinsic electron density, 1.45·1010 cm–3 at 300 K 
q  electron charge 
tox gate oxide thickness 
tSi  silicon film thickness 
ID  drain current 
L  channel length 
NA  channel doping concentration (of acceptors) 
ND/S  source/drain doping concentration (n+ type) 
S  subthreshold swing 
T  absolute temperature 
Vbi,i  junction built-in voltage between the source/drain 

and intrinsic silicon 
VB,eff  effective bottom (back) gate voltage 
VDS  drain-to-source voltage 
VF,eff  effective front gate voltage 
VGS  gate-to-source voltage 
VGS,B  bottom (back) gate voltage 
VGS,F  front gate voltage 
Ψ  electrostatic potential referenced to Fermi level 
Ψmin minimum electrostatic potential 
Φi  work function of intrinsic silicon, 4.71 eV at 300 

K 
ΦMF   work function of front gate material 
ΦMB   work function of bottom (back) gate material 
β = q/KT   inverse of thermal potential 
 
Artificial Neural Network  
Ikl   input of neuron l from layer k  
Oij  output of neuron j from layer i  
wijkl  weight relating the neuron j and neuron l. 
t ′  iteration level  

t
oE ′  system energy 

f'  1st derivative of the transfer function. 


