Semiconductor Physics, Quantum Electronics and Optoelectronics, 13 (2) P. 111-124 (2010).
DOI: https://doi.org/10.15407/spqeo13.02.111


References

1. R. Jones, H.M. Pollock, D. Geldart, A. Verlinden, Inter-particle forces in cohesive powders studied by AFM: effects of relative humidity, particle size and wall adhesion // Powder Technology 132, p. 196- 210 (2003).
https://doi.org/10.1016/S0032-5910(03)00072-X
2. Q. Ouyang, K. Ishida, K. Okada, Investigation of micro-adhesion by atomic force microscopy // Appl. Surf. Sci. 169-170, p. 644-648 (2001).
https://doi.org/10.1016/S0169-4332(00)00804-7
3. Guoxin Xie, Jianning Ding, Beirong Zheng, Wei Xue, Investigation of adhesive and frictional behavior of GeSbTe films with AFM/FFM // Tribology International 42, p. 183-189 (2009).
https://doi.org/10.1016/j.triboint.2008.03.014
4. Zoya Leonenko, Eric Finot, Matthias Amrein, Adhesive interaction measured between AFM probe and lung epithelial type II cells // Ultramicroscopy 107, p. 948-953 (2007).
https://doi.org/10.1016/j.ultramic.2007.02.036
5. S.J. Yuan, S.O. Pehkonen, AFM study of microbial colonization and its deleterious effect on 304 stainless steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in simulated seawater // Corrosion Sci. 51, p. 1372-1385 (2009).
https://doi.org/10.1016/j.corsci.2009.03.037
6. Seong S. Choi, V.V. Anh, M.S. Joo, Y.C. Kim, K.J. Kim, D.W. Kim, Analysis of force distance curve for biomolecule imaging // Current Appl. Phys. 6S1, p. 247-250 (2006).
https://doi.org/10.1016/j.cap.2006.01.049
7. V. Yanchenko, T. Alekseyeva, V. Bobrov, O. Lazarenko, P. Lytvyn, O. Lytvyn, S. Oshkaderov, Methode physique de determination de la biocompatibilite des materialix pour les implants intravesculaires // 8 Congres Francophone de cardiologie Interventionnelle, Paris, 11-13 October 2006, p. 114.
8. L. Zitzler, S. Herminghaus, and F. Mugele, Capillary forces in tapping mode atomic force microscopy // Phys. Rev. B 66, 155436-1-155436-8 (2002).
https://doi.org/10.1103/PhysRevB.66.155436
9. Dimitrios Fotiadis, Simon Scheuring, Shirley A. Muller, Andreas Engel and Daniel J. Muller, Imaging and manipulation of biological structures with the AFM // Micron 33(4), p. 385-397 (2002).
https://doi.org/10.1016/S0968-4328(01)00026-9
10. Werner Frammelsberger, Guenther Benstetter, Janice Kiely, Richard Stamp, C-AFM-based thickness determination of thin and ultra-thin SiO2 films by use of different conductive-coated probe tips // Appl. Surf. Sci. 253, p. 3615-3626 (2007).
https://doi.org/10.1016/j.apsusc.2006.07.070
11. Midori Kato, Masayoshi Ishibashi, Seiji Heike and Tomihiro Hashizume, Nanofabrication using atomic force microscopy lithography for molecular devices // Jpn. J. Appl. Phys. 41, p. 4916-4918 (2002).
https://doi.org/10.1143/JJAP.41.4916
12. P.M. Lytvyn, O.Ya. Olikh, O.S. Lytvyn, O.M. Dyachyns'ka, I.V. Prokopenko, Ultrasonic assisted nanomanipulations with atomic force microscope // Semiconductor Physics, Quantum Electronics & Optoelectronics, 13(1), p. 36-42 (2010).
https://doi.org/10.15407/spqeo13.01.036
13. Hans-Jurgen Butt, Brunero Cappella, Michael Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications // Surf. Sci. Repts. 59, p. 1-152 (2005).
https://doi.org/10.1016/j.surfrep.2005.08.003
14. V. Cambel, J. Martaus, J. Soltys, R. Kudela, D. Gregusova, AFM nanooxidation process - Technology perspective for mesoscopic structures // Surf. Sci. 601, p. 2717-2723 (2007).
https://doi.org/10.1016/j.susc.2006.12.058
15. Paula Gould, Lithography: rewriting the rules // Materialstoday 6, Issue 5, p. 34-39 (2003).
https://doi.org/10.1016/S1369-7021(03)00532-7
16. William B. Haines, Studies in the physical properties of soils: II. A note on the cohesion developed by capillary forces in an ideal soil // The Journal of Agricultural Science 15, Issue 04, p. 529-535 (1925).
https://doi.org/10.1017/S0021859600082460
17. R.A. Fisher, On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines // The Journal of Agricultural Science 16, Issue 03, p. 492-505 (1926)
https://doi.org/10.1017/S0021859600007838
18. L.S. Dongmo, J.S. Villarrubia, S.N. Jones, T.B. Renegar, M.T. Postek, J.F. Song, Experimental test of blind tip reconstruction for scanning probe microscopy // Ultramicroscopy 85, p. 141-153 (2000).
https://doi.org/10.1016/S0304-3991(00)00051-6
19. Jeffrey L. Hutter and John Bechhoefer, Calibration of atomic-force microscope tips // Rev. Sci. Instrum. 64 (7), p. 1868-1873 (1993).
https://doi.org/10.1063/1.1143970
20. J. Frankenfield, Volumes and areas of pendular rings with non-zero contact angles // http://www.snowman-jim.org/papers/rings/
21. J. Israelachvili, Intermolecular and Surface Forces. Academic Press, San Diego, CA, 1998.
22. H.-J. Butt and M. Kappl, Surface and Interfacial Forces. WILEY-VCH Verlag GmbH&Co, KGaA, Weinheim, 2010.
23. H.-J. Butt and M. Kappl, Normal Capillary Forces // Advances in Colloid and Interface Science 146, p. 48-60 (2009).
https://doi.org/10.1016/j.cis.2008.10.002
24. Li Zhao-Xia, Zhan Li Juan, Yi Hou-Hui, Fang HaiPing, Theoretical study on the capillary force between an atomic force microscope tip and a nanoparticle // Chin. Phys Lett. 24, No 6, p. 2289- 2292 (2007).
https://doi.org/10.1088/0256-307X/24/8/037
25. O.H. Pakarinen, A.S. Foster, M. Paajanen, T. Kalinainen, J. Katainen, I. Makkonen, J. Lahtinen and R.M. Nieminen, Towards an accurate description of the capillary force in nanoparticle-surface interactions // Modelling Simul. Mater. Sci. Eng. 13, p. 1175-1186 (2005).
https://doi.org/10.1088/0965-0393/13/7/012
26. F.M. Orr, L.E. Scriven, P. Rivas, Pendular rings between solids: meniscus properties and capillary force // J. Fluid Mech. 67, p. 723-742 (1975).
https://doi.org/10.1017/S0022112075000572