3.
U.K. Mishra, Y. Wu, B.P. Kellar, S. Kelar, S.P. Baars Den, GaN
microwave electronics . IEEE Trans. Microwave Theory Technique MTT- 46,
p. 756-761 (1999). https://doi.org/10.1109/22.681197
4. S.J. Peatron, J.C. Zolper, R.J. Shul and F. Ren, GaN: processing, defects, and devices . J. Appl. Phys. 86, p. 1-78 (1999). https://doi.org/10.1063/1.371145
5.
J.B. Casady and R.W. Johnson, Status of silicon carbide as a
wide-bandgap semiconductor for high- temperature applications: a review
. Solid-State Electron., 39(10), p. 1409-1422 (1996). https://doi.org/10.1016/0038-1101(96)00045-7
6.
P.G. Neudeck, Progress in silicon carbide semiconductor electronics
technology . J. Electron. Mater., 24 (4), p. 283-288 (1995). https://doi.org/10.1007/BF02659688
7.
W.S. Loh, B.K. Ng, J.S. Ng, Stanislav I. Soloviev, Ho-young Cha, Peter
M. Sandvik, C. Mark Johnson and John P.R. David, Impact ionization
coefficients in 4H-SiC. IEEE Trans. Electron. Devices, 55(8), p.
1984-1990 (2008). https://doi.org/10.1109/TED.2008.926679
8.
A. Reklaitis and L. Reggiani, Monte Carlo study of hot-carrier
transport in bulk wurtzite GaN and modeling of a near-terahertz impact
avalanche transit time diode. J. Appl. Phys., 95(12), p. 7925- 7935
(2004). 9. P.R. Tripathy, A.K. Panda and S.P. Pati, Comparison between
the DC and microwave performance of wurtzite phase and zinc-blende
phase GaN-based IMPATTs . Proc. XV Intern. Workshop on Physics of
Semiconductor Devices (IWPSD-2009), p. 525-528 (2009).
10.
Electronic Archive: New Semiconductor Materials, Characteristics and
Properties. [Online]. Available:
http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiC
11. I.H.
Oguzman, E. Belloti, K.F. Brennan, J. Kolnik, R. Wang, P.P. Buden,
Theory of hole initiated impact ionization in bulk zinc blende and
wurtzite GaN. J. Appl. Phys., 81(2), p. 7827-7836 (1997). https://doi.org/10.1063/1.365392
12.
Electronic Archive: New Semiconductor Materials, Characteristics and
Properties. [Online]. Available:
http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaN
13. S.K.
Dash and S.P. Pati, Effect of optical radiation on millimeter-wave
characteristics and avalanche noise generation in double-drift IMPATT
diodes based on opto-sensitive semiconductors . Microwave and Optical
Technology Letter, 33(4), p. 295-300 (2002). https://doi.org/10.1002/mop.10300
14. H. Eisele and G.I. Haddad, Microwave Semiconductor Device Physics, S.M. Sze Ed. Willey, New York, 1997, p. 343.
15.
A.K. Panda, D. Pavlidis, and E. Alekseev, Noise characteristics of
GaN-based IMPATTs . IEEE Trans. Electron Devices, 48, p. 1473-1475
(2001). https://doi.org/10.1109/16.930669
16.
A. Reklaitis and L. Reggiani, Monte Carlo investigation of current
voltage and avalanche noise in GaN double-drift impact diodes. J. Appl.
Phys., 97, 043709 (2005). https://doi.org/10.1063/1.1853498
17.
K. Vassilevski, K. Zekentes, G. Constantidis, A. Strel'chuck,
Fabrication and electrical characterization of 4H-SiC p + -n-n + diodes
with low differential resistance . Solid-State Electron., 44, p.
1173-1177 (2000). https://doi.org/10.1016/S0038-1101(00)00053-8
18.
S.J. Pearton, C.B. Vartuli, J.C. Zolper, C. Yuan, and R.A. Stall, Ion
implantation doping and isolation of GaN . Appl. Phys. Lett., 67(10),
p. 1435-1437 (1995). https://doi.org/10.1063/1.114518
19.
D. Pastor, J. Ibá-ez, R. Cuscó, L. Artús, G. González-Diaz, and E.
Calleja, Crystal damage assessment of Be + -implanted GaN by UV Raman
scattering. Semicond. Sci. Technol., 22(2), p. 70- 73 (2007). https://doi.org/10.1088/0268-1242/22/2/012
20.
M. Mukherjee, N. Mazumder and S.K. Roy, Photosensitivity analysis of
gallium nitride and silicon carbide terahertz IMPATT oscillators:
Comparison of theoretical reliability and study on experimental
feasibility. IEEE Trans. Device and Materials Reliability, 8, p.
608-620 (2008). https://doi.org/10.1109/TDMR.2008.2002358
21.
R. Konishi, R. Yasokuchi, O. Nakatsuka, Y. Koide, M. Moriyama, and M.
Murakami, Development of Ni/Al and Ni/Ti/Al ohmic contact materials for
p- type 4H-SiC. Mater. Sci. Eng. B, 98 (3), p. 286- 293 (2003). https://doi.org/10.1016/S0921-5107(03)00065-5
22.
C.H. Carter Jr., V.F. Tsvetkov, R.C. Glass, D. Henshall, M. Brady, S.G.
Muller, O. Kordina, K. Irvine, J.A. Edmond, H.-S. Kong, R. Singh, S.T.
Allen, J.W. Palmour, Progress in SiC: from material growth to
commercial device development // Mater. Sci. Eng., B61-2, p. 1-8 (1999). https://doi.org/10.1016/S0921-5107(98)00437-1
23.
R.R. Siergiej, R.C. Clarke, S. Sriram, A.K. Agar- wal, R.J. Bojko, A.W.
Morse, V. Balakrishna, M.F. MacMillan, A.A. Burk Jr., C.D. Brandt,
Advances in SiC materials and devices: an industrial point of view.
Mater. Sci. Eng. B61-2, p. 9-17 (1999). https://doi.org/10.1016/S0921-5107(98)00438-3
24. R. Madar, Silicon carbide in contention. Nature, 430, p. 1009-1012, Aug. 26 (2004).
25.
L. Yuan, J.A. Cooper Jr, M.R. Melloch and K.J. Webb, Experimental
determination of a SiC IMPATT oscillator. IEEE Electron Device Lett.,
22(6), p. 266 (2001). https://doi.org/10.1109/55.924837
26.
M. Mukherjee, N. Mazumder and A. Dasgupta, Simulation experiment on
optical modulation of 4H-SiC millimeter-wave high power IMPATT
oscillator . J. Europ. Microwave Association (EuMA Publishing – UK), 4,
p. 276-282 (2008).