Semiconductor Physics, Quantum Electronics & Optoelectronics. 2011. V. 14, N 2. P. 137-144.
https://doi.org/10.15407/spqeo14.02.137



References 

1. V.V. Buniatyan and V.M. Aroutiounian, Wide gap semiconductor microwave devices . J. Phys. D: Appl. Phys., 40 (20), p. 6355-6385 (2007).
https://doi.org/10.1088/0022-3727/40/20/S18
 
2. M.S. Shur, GaN based transistors for high power applications . Solid-State Electron., 42(12), p. 2131-2138 (1998).
https://doi.org/10.1016/S0038-1101(98)00208-1
 
3. U.K. Mishra, Y. Wu, B.P. Kellar, S. Kelar, S.P. Baars Den, GaN microwave electronics . IEEE Trans. Microwave Theory Technique MTT- 46, p. 756-761 (1999).
https://doi.org/10.1109/22.681197
 
4. S.J. Peatron, J.C. Zolper, R.J. Shul and F. Ren, GaN: processing, defects, and devices . J. Appl. Phys. 86, p. 1-78 (1999).
https://doi.org/10.1063/1.371145
 
5. J.B. Casady and R.W. Johnson, Status of silicon carbide as a wide-bandgap semiconductor for high- temperature applications: a review . Solid-State Electron., 39(10), p. 1409-1422 (1996).
https://doi.org/10.1016/0038-1101(96)00045-7
 
6. P.G. Neudeck, Progress in silicon carbide semiconductor electronics technology . J. Electron. Mater., 24 (4), p. 283-288 (1995).
https://doi.org/10.1007/BF02659688
 
7. W.S. Loh, B.K. Ng, J.S. Ng, Stanislav I. Soloviev, Ho-young Cha, Peter M. Sandvik, C. Mark Johnson and John P.R. David, Impact ionization coefficients in 4H-SiC. IEEE Trans. Electron. Devices, 55(8), p. 1984-1990 (2008).
https://doi.org/10.1109/TED.2008.926679
 
8. A. Reklaitis and L. Reggiani, Monte Carlo study of hot-carrier transport in bulk wurtzite GaN and modeling of a near-terahertz impact avalanche transit time diode. J. Appl. Phys., 95(12), p. 7925- 7935 (2004). 9. P.R. Tripathy, A.K. Panda and S.P. Pati, Comparison between the DC and microwave performance of wurtzite phase and zinc-blende phase GaN-based IMPATTs . Proc. XV Intern. Workshop on Physics of Semiconductor Devices (IWPSD-2009), p. 525-528 (2009).
 
10. Electronic Archive: New Semiconductor Materials, Characteristics and Properties. [Online]. Available: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiC
 
11. I.H. Oguzman, E. Belloti, K.F. Brennan, J. Kolnik, R. Wang, P.P. Buden, Theory of hole initiated impact ionization in bulk zinc blende and wurtzite GaN. J. Appl. Phys., 81(2), p. 7827-7836 (1997).
https://doi.org/10.1063/1.365392
 
12. Electronic Archive: New Semiconductor Materials, Characteristics and Properties. [Online]. Available: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaN
 
13. S.K. Dash and S.P. Pati, Effect of optical radiation on millimeter-wave characteristics and avalanche noise generation in double-drift IMPATT diodes based on opto-sensitive semiconductors . Microwave and Optical Technology Letter, 33(4), p. 295-300 (2002).
https://doi.org/10.1002/mop.10300
 
14. H. Eisele and G.I. Haddad, Microwave Semiconductor Device Physics, S.M. Sze Ed. Willey, New York, 1997, p. 343. 
 
15. A.K. Panda, D. Pavlidis, and E. Alekseev, Noise characteristics of GaN-based IMPATTs . IEEE Trans. Electron Devices, 48, p. 1473-1475 (2001).
https://doi.org/10.1109/16.930669
 
16. A. Reklaitis and L. Reggiani, Monte Carlo investigation of current voltage and avalanche noise in GaN double-drift impact diodes. J. Appl. Phys., 97, 043709 (2005).
https://doi.org/10.1063/1.1853498
 
17. K. Vassilevski, K. Zekentes, G. Constantidis, A. Strel'chuck, Fabrication and electrical characterization of 4H-SiC p + -n-n + diodes with low differential resistance . Solid-State Electron., 44, p. 1173-1177 (2000).
https://doi.org/10.1016/S0038-1101(00)00053-8
 
18. S.J. Pearton, C.B. Vartuli, J.C. Zolper, C. Yuan, and R.A. Stall, Ion implantation doping and isolation of GaN . Appl. Phys. Lett., 67(10), p. 1435-1437 (1995).
https://doi.org/10.1063/1.114518
 
19. D. Pastor, J. Ibá-ez, R. Cuscó, L. Artús, G. González-Diaz, and E. Calleja, Crystal damage assessment of Be + -implanted GaN by UV Raman scattering. Semicond. Sci. Technol., 22(2), p. 70- 73 (2007).
https://doi.org/10.1088/0268-1242/22/2/012
 
20. M. Mukherjee, N. Mazumder and S.K. Roy, Photosensitivity analysis of gallium nitride and silicon carbide terahertz IMPATT oscillators: Comparison of theoretical reliability and study on experimental feasibility. IEEE Trans. Device and Materials Reliability, 8, p. 608-620 (2008).
https://doi.org/10.1109/TDMR.2008.2002358
 
21. R. Konishi, R. Yasokuchi, O. Nakatsuka, Y. Koide, M. Moriyama, and M. Murakami, Development of Ni/Al and Ni/Ti/Al ohmic contact materials for p- type 4H-SiC. Mater. Sci. Eng. B, 98 (3), p. 286- 293 (2003).
https://doi.org/10.1016/S0921-5107(03)00065-5
 
22. C.H. Carter Jr., V.F. Tsvetkov, R.C. Glass, D. Henshall, M. Brady, S.G. Muller, O. Kordina, K. Irvine, J.A. Edmond, H.-S. Kong, R. Singh, S.T. Allen, J.W. Palmour, Progress in SiC: from material growth to commercial device development // Mater. Sci. Eng., B61-2, p. 1-8 (1999).
https://doi.org/10.1016/S0921-5107(98)00437-1
 
23. R.R. Siergiej, R.C. Clarke, S. Sriram, A.K. Agar- wal, R.J. Bojko, A.W. Morse, V. Balakrishna, M.F. MacMillan, A.A. Burk Jr., C.D. Brandt, Advances in SiC materials and devices: an industrial point of view. Mater. Sci. Eng. B61-2, p. 9-17 (1999).
https://doi.org/10.1016/S0921-5107(98)00438-3
 
24. R. Madar, Silicon carbide in contention. Nature, 430, p. 1009-1012, Aug. 26 (2004).
 
25. L. Yuan, J.A. Cooper Jr, M.R. Melloch and K.J. Webb, Experimental determination of a SiC IMPATT oscillator. IEEE Electron Device Lett., 22(6), p. 266 (2001).
https://doi.org/10.1109/55.924837
 
26. M. Mukherjee, N. Mazumder and A. Dasgupta, Simulation experiment on optical modulation of 4H-SiC millimeter-wave high power IMPATT oscillator . J. Europ. Microwave Association (EuMA Publishing – UK), 4, p. 276-282 (2008).