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1. Introduction  

In crystals with one and only simple band, the electron-
electron scattering does not change the total momentum 
of carriers and therefore does not give a direct, 
independent contribution to the conductivity. Quite 
another situation we have for crystals with a composite 
band structure. There the conductivity of crystal can be 
essentially influenced by mutual drag of carriers that 
belong to different partial bands or valleys (see Refs. 
[1, 2]). In particular, the inter-valley drag can 
sufficiently diminish the electron mobility of n-Si and n-
Ge at low temperatures. The reason of that is a principal 
difference between scattering of band electrons from 
some valley on fixed charged impurities or equilibrium 
phonons and scattering on nonequilibrium electrons 
from another valley, where divergence of equilibrium 
differs. Now, we have some right to hope that the inter-
valley drag in multy-valley semiconductors can 
noticeably influence not only conductivity but 
piezoresistance as well. In this article, we again will pay 
the main attention to the region of low temperatures 
where Coulomb scattering is not damped by collisions of 
electrons with phonons. We restrict here our calculations 
by charged impurities and acoustic phonons as an 
external scattering system.  

2. Balance equations  

In Refs [1, 2], the set of balance equations obtained as a 
first momentum of quantum kinetic equations was 
presented: 
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 (2) 
is related to interaction of band carriers with charged 
impurities located uniformly in space;  and 

 are Fourier components of the correlator of 
impurity and phonon scattering potentials. 
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relates to interaction between drifting carriers from a- 
and b-valleys.  

Here, and  are the concentration and 

dispersion law for electrons from a-valley. For 
undeformed crystal of n-Si, we have (see Fig. 1): 
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For two valleys (а =  1 and 4) 

⊥=== mmmmm yyxxzz ,|| ; for two valleys 

(а = 2 and 5)  and for two 

valleys (а = 3 and 6) , 
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The screening dielectric function for quasi-elastic 
collisions possesses the form 
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where  is the dielectric constant of crystal lattice and Lε

),( qe
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ωεΔ  is the contribution of band electrons to the 
total dielectric function. For convenience, we will use 
the following form: 
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Here,  is the concentration of charged 

impurities; , where  and 
In

udA Ξ+Ξ=Ξ )2/1( dΞ uΞ  
are dilation and shear deformation potential constants 
(see, for example, Refs. [6] and [7]). The form (7) 
corresponds to the approximation of quasi-elastic 
collisions. 

The screening plays a significant, even appointing 
role in the area of small transferred vectors q; therefore, 
instead of )(2

0 qq
r

, we can use the following approximate 
expression (see Ref. [1]): 

 
Fig. 1. Band structure of n-silicon. 
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Here, the Fermi-integral 
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⊥= mmL /|| , Γ is the gamma-function,  is 
the dimensionless Fermi-energy. The form (7) is valid 
for deformed crystal, if one uses linear approximation 
over deformation. For nondegenerate carriers  
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To calculate drift velocities )(aur  of electrons from a-
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distribution function for a-carriers. Drift velocities )(au
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are proportional to partial densities of currents )(aj
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Here, n(a) is the concentration of electrons in the a-
valley. The density of total current: 
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 Using the forms (10) and carrying out 
linearization of forces in Eqs. (2) and (3) over drift 
velocities, we obtain: 
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Here, components of tensors )(~ aβ and ),(~ baξ  are 
(see [2, 3] and Eqs. (6) and (7)): 
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In Eqs. (15)-(17), the indices zyxvu ,,, =  and the 
imaginary part of dielectric function 
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For quasi-elastic collisions, we have the form 
(see [1]) 
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As a result, we have: 
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From Eqs. (1) and (13), one obtains the system of 
equations for partial drift velocities: 
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(а = 1, 2, …, 6).  (24) 
In this system of equations, kinetic coefficients 
 and  have a matrix form with matrices )(aβ ),( baξ ),(~ baξ  

responding for inter-valley drag. The value 1)( )~( −β a is 
the mobility tensor for a-carriers, if one neglects inter-
valley drag ( 0~ ),( →ξ ba ). 

3. Populations of valleys in deformed crystal 

Let a silicon crystal is mechanically compressed along 
the axis [001] (see Fig. 1), then the components of stress 
tensor are  

XX zααβαβ δδ−=  (here ). (25) 0>X
For this situation, the dispersion law for different 

valleys can be written in the following form (see 
Ref. [4]): 
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uΞ  is the shear deformation potential,  and  are 
the elastic constants. 
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For nondegenerate carriers 
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 As it follows from conservation of the total 

number of carriers (see Eq. (8)), 
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4. Kinetic coefficients for deformed silicon crystal 

Consider the case when the electric field is applied along 
some fourfold l-axis, that is 
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and diagonal components of the tensors )(~ aβ  and ),(~ baξ  
are distinct of zero (in the coordinate system related to 
fourfold axes), and then one can write the system of 
equations corresponding to the system (24) in the form  
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Here, the expressions for  and  

have the forms (14), (18)-(21) where the dimensionless 
Fermi energy  in the formulae (18) is shifted in the 
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Below we assume the deformation to be small and 
linearize all the expressions over the stress X. 

 In this paper, we consider only nondegenerate gas 
(see Fig. 2; there the solid line corresponds to the 
relation ). Then, it follows from symmetry 
of the considered system for carriers: 
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Fig. 2. Areas of degenerate and nondegenerate electron gas. 

Then, only z-components of drift velocities )(au
r

 
and zz-components of the tensors )(~ aβ  and ),(~ baξ  are 
distinct of zero, and one can write Eqs. (32) in the form  
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 One can write the resulting expression for total 

conductivity of deformed crystal in the following form: 
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For undeformed crystal, 

)2(2
182

3
)();0(

2121

12
β+βξ+ββ
ξ+β+β

=ξμ=ξσ
neenzz . (42) 

 Let us define the piezoresistance coefficient 
)(ξπ kk  by using the expression (see Refs. [5, 6]) 

0

);(
);0(

1)(
=⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ ξσ

ξσ
−=ξπ

X

kk

kk
kk dX

Xd
. (43) 

If we direct the electrical field  along x- and y-
axes, for the case (25) we will obtain the relation 
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To investigate the dependence of conductivity and 

piezoresistance coefficient on the parameter of inter-
valley drag, we use the following formulae obtained 
from the Eqs. (35), (42), (43): 
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Fig. 3. Dependence of relative piezocoefficient πzz  on temperature. 

5. Results of numerical calculations 

These results are shown in Figs 3 to 5. Here, Figs 3(a, 
b, c) show the absolute value of piezoresistance 
coefficients. In calculations, we use the following data 
(see Refs. [5, 6]):  

; M = 6; L = 4.8; 

,g101066.9 28
0

−⋅=m

g10342.8 28
||

−⋅=m 12=εL ; 

916.0)/( 0|| =mm ; , 112
1211 Pa1082.9 −−⋅=− ss

eV6.8=Ξ u ; 12=εL , 92.0)/( 0|| =mm , 

, Pa1066.1 112 ⋅=ρ s eV2.4)2/1( −=Ξ+Ξ=Ξ udA . In 
Figs (a), (b), (c), solid lines represent the piezoresistance 
coefficient for crystal where band carriers are involved 
in drag. The dashed lines correspond to the calculations 
when inter-valley drag is ignored.  

Figs 4 and 5 represent relative values. One can see 
that inter-valley drag gains the piezocoefficient and 
diminishes the mobility. Within the region of 
nondegenerate carriers, the drag effect becomes more 
pronounced when the carrier concentration grows and 
temperature falls. 
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Fig. 4. Dependence of relative mobility on carrier 
concentration. 1 − T = 20 K; 2 − 40; 3 − 70; 4 − 120; 
5 − 150.  
 

 
Fig. 5. Dependence of relative piezocoefficient on carrier 
concentration. 1 − T = 20 K; 2 − 40; 3 − 70; 4 − 100; 
5 − 150. 
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