Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 2. P. 129-138.
https://doi.org/
10.15407/spqeo15.02.129



References

1. A.K. Geim and K.S. Novoselov. Nature Materials, No.6, p. 183 (2007).
https://doi.org/10.1038/nmat1849
 
2. Castro Nero et al., The electronic properties of graphene. Rev. Mod. Phys. 81, p. 109 (2009).
https://doi.org/10.1103/RevModPhys.81.109
 
3. P.R. Wallace. Phys. Rev. 71, p. 622 (1947).
https://doi.org/10.1103/PhysRev.71.622
 
4. K.S. Novoselov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, p. 197 (2005).
https://doi.org/10.1038/nature04233
 
5. S. Kim et al., Coulomb drag of massless fermions in graphene. arXiv. 1010.2113v1 [cond.-mat. mes-hall] 11 Oct. 2010.
 
6. I.I. Boiko, Influence of electron-hole drag on conductivity of neutral and gated grapheme. arXiv. 1011.1105 [cond-mat.] 3 November, 2010.
 
7. I.I. Boiko, Transport of Carriers in Semiconductors, Publ. V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, 2009 (in Russian).
 
8. I.I. Boiko, Kinetics of Electron Gas Interacting with Fluctuating Potential. Naukova dumka, Kyiv, 1993 (in Russian).
 
9. I.I. Boiko, Impurity scattering of band carriers. Semiconductor Physics, Quantum Electronics & Optoelectronics, 13(2), p. 214-220 (2010).
 
10. O. Madelung, Physics of III-V Compounds. J.Willey ans Sons, Inc., 1964.
 
11. P.M. Morse, H. Feshbach, Methods of Theoretical Physics. McGraw Hill, Inc., 1953.
 
12. R.S. Popovic, Hall Effect Devices. Second Edition. IOP Publishing Ltd., 2004.
https://doi.org/10.1887/0750308559